5 Publikationen
-
2024 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2993740Vaquet, V., Hinder, F., Vaquet, J., Lammers, K., Quakernack, L., & Hammer, B. (2024). Localizing of Anomalies in Critical Infrastructure using Model-Based Drift Explanations. 2024 International Joint Conference on Neural Networks (IJCNN), 1-8. IEEE. https://doi.org/10.1109/IJCNN60899.2024.10651472
-
2024 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2993739Vaquet, V., Hinder, F., Artelt, A., Ashraf, I., Strotherm, J., Vaquet, J., Brinkrolf, J., et al. (2024). Challenges, Methods, Data–A Survey of Machine Learning in Water Distribution Networks. In M. Wand, K. Malinovská, J. Schmidhuber, & I. V. Tetko (Eds.), Lecture Notes in Computer Science. Artificial Neural Networks and Machine Learning – ICANN 2024. 33rd International Conference on Artificial Neural Networks, Lugano, Switzerland, September 17–20, 2024, Proceedings, Part IX (pp. 155-170). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-72356-8_11
-
2024 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2993744Vaquet, V., Vaquet, J., Hinder, F., Malialis, K., Panayiotou, C., Polycarpou, M., & Hammer, B. (2024). Self-Supervised Learning from Incrementally Drifting Data Streams. ESANN 2024 proceesdings, 431-436. Louvain-la-Neuve (Belgium): Ciaco - i6doc.com. https://doi.org/10.14428/esann/2024.ES2024-49
-
2024 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2992337Zanutto, D., Michalopoulos, C., Chatzistefanou, G. - A., Vamvakeridou-Lyroudia, L., Tsiami, L., Glynis, K., Samartzis, P., et al. (2024). A Water Futures Approach on Water Demand Forecasting with Online Ensemble Learning. The 3rd International Joint Conference on Water Distribution Systems Analysis & Computing and Control for the Water Industry (WDSA/CCWI 2024), 60. Basel Switzerland: MDPI. https://doi.org/10.3390/engproc2024069060
-
2021 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2960687Vaquet, V., Hinder, F., Vaquet, J., Brinkrolf, J., & Hammer, B. (2021). Online Learning on Non-Stationary Data Streams for Image Recognition using Deep Embeddings. IEEE Symposium Series on Computational Intelligence, 1-7. https://doi.org/10.1109/SSCI50451.2021.9659903