Generating Piano Practice Policy with a Gaussian Process
Moringen A, Vromen E, Ritter H, Friedman J (2024)
In: AI for Education Workshop, 26-27 February 2024, Vancouver Convention Center, Vancouver, Canada. Ananda M, Malick DB, Burstein J, Liu LT, Liu Z, Sharpnack J, Wang Z, Wang S (Eds); Proceedings of Machine Learning Research, 257. Cambridge, Massachusetts: MIT Press: 151-161.
Konferenzbeitrag
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Moringen, Alexandra;
Vromen, Elad;
Ritter, HelgeUniBi
;
Friedman, Jason

Herausgeber*in
Ananda, Muktha;
Malick, Debshila Basu;
Burstein, Jill;
Liu, Lydia T.;
Liu, Zitao;
Sharpnack, James;
Wang, Zichao;
Wang, Serena
Einrichtung
Abstract / Bemerkung
A typical process of learning to play a piece on a piano consists of a progression through a series of practice units that focus on individual dimensions of the skill, the so-called practice modes. Practice modes in learning to play music comprise a particularly large set of possibilities, such as hand coordination, posture, articulation, ability to read a music score, correct timing or pitch, etc. Self-guided practice is known to be suboptimal, and a model that schedules optimal practice to maximize a learner's progress still does not exist. Because we each learn differently and there are many choices for possible piano practice tasks and methods, the set of practice modes should be dynamically adapted to the human learner, a process typically guided by a teacher. However, having a human teacher guide individual practice is not always feasible since it is time-consuming, expensive, and often unavailable. In this work, we present a modeling framework to guide the human learner through the learning process by choosing the practice modes generated by a policy model. To this end, we present a computational architecture building on a Gaussian process that incorporates 1) the learner state, 2) a policy that selects a suitable practice mode, 3) performance evaluation, and 4) expert knowledge. The proposed policy model is trained to approximate the expert-learner interaction during a practice session. In our future work, we will test different Bayesian optimization techniques, e.g., different acquisition functions, and evaluate their effect on the learning progress.
Stichworte
computational scaffolding;
accelerating motor learning;
learning to play;
piano;
practice modes;
computational architecture for learning
Erscheinungsjahr
2024
Titel des Konferenzbandes
AI for Education Workshop, 26-27 February 2024, Vancouver Convention Center, Vancouver, Canada
Serien- oder Zeitschriftentitel
Proceedings of Machine Learning Research
Band
257
Seite(n)
151-161
Konferenz
5th Annual Workshop on Artificial Intelligence for Education - Bridging Innovation and Responsibility at the 38th Annual AAAI Conference
Konferenzort
Vancouver, Canada
Konferenzdatum
2024-02-26 – 2024-02-27
ISSN
2640-3498
Page URI
https://pub.uni-bielefeld.de/record/3000568
Zitieren
Moringen A, Vromen E, Ritter H, Friedman J. Generating Piano Practice Policy with a Gaussian Process. In: Ananda M, Malick DB, Burstein J, et al., eds. AI for Education Workshop, 26-27 February 2024, Vancouver Convention Center, Vancouver, Canada. Proceedings of Machine Learning Research. Vol 257. Cambridge, Massachusetts: MIT Press; 2024: 151-161.
Moringen, A., Vromen, E., Ritter, H., & Friedman, J. (2024). Generating Piano Practice Policy with a Gaussian Process. In M. Ananda, D. B. Malick, J. Burstein, L. T. Liu, Z. Liu, J. Sharpnack, Z. Wang, et al. (Eds.), Proceedings of Machine Learning Research: Vol. 257. AI for Education Workshop, 26-27 February 2024, Vancouver Convention Center, Vancouver, Canada (pp. 151-161). Cambridge, Massachusetts: MIT Press.
Moringen, Alexandra, Vromen, Elad, Ritter, Helge, and Friedman, Jason. 2024. “Generating Piano Practice Policy with a Gaussian Process”. In AI for Education Workshop, 26-27 February 2024, Vancouver Convention Center, Vancouver, Canada, ed. Muktha Ananda, Debshila Basu Malick, Jill Burstein, Lydia T. Liu, Zitao Liu, James Sharpnack, Zichao Wang, and Serena Wang, 257:151-161. Proceedings of Machine Learning Research. Cambridge, Massachusetts: MIT Press.
Moringen, A., Vromen, E., Ritter, H., and Friedman, J. (2024). “Generating Piano Practice Policy with a Gaussian Process” in AI for Education Workshop, 26-27 February 2024, Vancouver Convention Center, Vancouver, Canada, Ananda, M., Malick, D. B., Burstein, J., Liu, L. T., Liu, Z., Sharpnack, J., Wang, Z., and Wang, S. eds. Proceedings of Machine Learning Research, vol. 257, (Cambridge, Massachusetts: MIT Press), 151-161.
Moringen, A., et al., 2024. Generating Piano Practice Policy with a Gaussian Process. In M. Ananda, et al., eds. AI for Education Workshop, 26-27 February 2024, Vancouver Convention Center, Vancouver, Canada. Proceedings of Machine Learning Research. no.257 Cambridge, Massachusetts: MIT Press, pp. 151-161.
A. Moringen, et al., “Generating Piano Practice Policy with a Gaussian Process”, AI for Education Workshop, 26-27 February 2024, Vancouver Convention Center, Vancouver, Canada, M. Ananda, et al., eds., Proceedings of Machine Learning Research, vol. 257, Cambridge, Massachusetts: MIT Press, 2024, pp.151-161.
Moringen, A., Vromen, E., Ritter, H., Friedman, J.: Generating Piano Practice Policy with a Gaussian Process. In: Ananda, M., Malick, D.B., Burstein, J., Liu, L.T., Liu, Z., Sharpnack, J., Wang, Z., and Wang, S. (eds.) AI for Education Workshop, 26-27 February 2024, Vancouver Convention Center, Vancouver, Canada. Proceedings of Machine Learning Research. 257, p. 151-161. MIT Press, Cambridge, Massachusetts (2024).
Moringen, Alexandra, Vromen, Elad, Ritter, Helge, and Friedman, Jason. “Generating Piano Practice Policy with a Gaussian Process”. AI for Education Workshop, 26-27 February 2024, Vancouver Convention Center, Vancouver, Canada. Ed. Muktha Ananda, Debshila Basu Malick, Jill Burstein, Lydia T. Liu, Zitao Liu, James Sharpnack, Zichao Wang, and Serena Wang. Cambridge, Massachusetts: MIT Press, 2024.Vol. 257. Proceedings of Machine Learning Research. 151-161.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Suchen in