Perfusion Process Intensification for Lentivirus Production Using a Novel Scale‐Down Model
Klimpel M, Pflüger‐Müller B, Cascallana MA, Schwingal S, Lal NI, Noll T, Pirzas V, Laux H (2024)
Biotechnology and Bioengineering.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Autor*in
Klimpel, Maximilian;
Pflüger‐Müller, Beatrice;
Cascallana, Marta Arrizabalaga;
Schwingal, Sarah;
Lal, Nikki Indresh;
Noll, ThomasUniBi ;
Pirzas, Vicky;
Laux, Holger
Einrichtung
Abstract / Bemerkung
Process intensification has become an important strategy to lower production costs and increase manufacturing capacities for biopharmaceutical products. In particular for the production of viral vectors like lentiviruses (LVs), the transition from (fed‐)batch to perfusion processes is a key strategy to meet the increasing demands for cell and gene therapy applications. However, perfusion processes are associated with higher medium consumption. Therefore, it is necessary to develop appropriate small‐scale models to reduce development costs. In this work, we present the use of the acoustic wave separation technology in combination with the Ambr 250 high throughput bioreactor system for intensified perfusion process development using stable LV producer cells. The intensified perfusion process developed in the Ambr 250 model, performed at a harvest rate of 3 vessel volumes per day (VVD) and high cell densities, resulted in a 1.4‐fold higher cell‐specific functional virus yield and 2.8‐fold higher volumetric virus yield compared to the control process at a harvest rate of 1 VVD. The findings were verified at bench scale after optimizing the bioreactor set‐up, resulting in a 1.4‐fold higher cell‐specific functional virus yield and 3.1‐fold higher volumetric virus yield.
Erscheinungsjahr
2024
Zeitschriftentitel
Biotechnology and Bioengineering
Urheberrecht / Lizenzen
ISSN
0006-3592
eISSN
1097-0290
Page URI
https://pub.uni-bielefeld.de/record/2994240
Zitieren
Klimpel M, Pflüger‐Müller B, Cascallana MA, et al. Perfusion Process Intensification for Lentivirus Production Using a Novel Scale‐Down Model. Biotechnology and Bioengineering. 2024.
Klimpel, M., Pflüger‐Müller, B., Cascallana, M. A., Schwingal, S., Lal, N. I., Noll, T., Pirzas, V., et al. (2024). Perfusion Process Intensification for Lentivirus Production Using a Novel Scale‐Down Model. Biotechnology and Bioengineering. https://doi.org/10.1002/bit.28880
Klimpel, Maximilian, Pflüger‐Müller, Beatrice, Cascallana, Marta Arrizabalaga, Schwingal, Sarah, Lal, Nikki Indresh, Noll, Thomas, Pirzas, Vicky, and Laux, Holger. 2024. “Perfusion Process Intensification for Lentivirus Production Using a Novel Scale‐Down Model”. Biotechnology and Bioengineering.
Klimpel, M., Pflüger‐Müller, B., Cascallana, M. A., Schwingal, S., Lal, N. I., Noll, T., Pirzas, V., and Laux, H. (2024). Perfusion Process Intensification for Lentivirus Production Using a Novel Scale‐Down Model. Biotechnology and Bioengineering.
Klimpel, M., et al., 2024. Perfusion Process Intensification for Lentivirus Production Using a Novel Scale‐Down Model. Biotechnology and Bioengineering.
M. Klimpel, et al., “Perfusion Process Intensification for Lentivirus Production Using a Novel Scale‐Down Model”, Biotechnology and Bioengineering, 2024.
Klimpel, M., Pflüger‐Müller, B., Cascallana, M.A., Schwingal, S., Lal, N.I., Noll, T., Pirzas, V., Laux, H.: Perfusion Process Intensification for Lentivirus Production Using a Novel Scale‐Down Model. Biotechnology and Bioengineering. (2024).
Klimpel, Maximilian, Pflüger‐Müller, Beatrice, Cascallana, Marta Arrizabalaga, Schwingal, Sarah, Lal, Nikki Indresh, Noll, Thomas, Pirzas, Vicky, and Laux, Holger. “Perfusion Process Intensification for Lentivirus Production Using a Novel Scale‐Down Model”. Biotechnology and Bioengineering (2024).
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung - Nicht kommerziell - Keine Bearbeitungen 4.0 International (CC BY-NC-ND 4.0):
Volltext(e)
Access Level
Open Access
Zuletzt Hochgeladen
2024-11-13T14:09:36Z
MD5 Prüfsumme
8d19c289d424a745319823dc1066681d