Natural Language Hypotheses in Scientific Papers and How to Tame Them Suggested Steps for Formalizing Complex Scientific Claims

Heger T, Algergawy A, Brinner MF, Jeschke JM, König-Ries B, Mietchen D, Zarrieß S (2024)
In: Robust Argumentation Machines (RATIO 2024) . Cimiano P, Frank A, Kohlhase M, Stein B (Eds); Lecture Notes in Artificial Intelligence, 14638. Cham: Springer : 3-19.

Konferenzbeitrag | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Heger, Tina; Algergawy, Alsayed; Brinner, Marc FelixUniBi; Jeschke, Jonathan M.; König-Ries, Birgitta; Mietchen, Daniel; Zarrieß, SinaUniBi
Herausgeber*in
Cimiano, Philipp; Frank, Anette; Kohlhase, Michael; Stein, Benno
Abstract / Bemerkung
Hypotheses are critical components of scientific argumentation. Knowing established hypotheses is often a prerequisite for following and contributing to scientific arguments in a research field. In scientific publications, hypotheses are usually presented for specific empirical settings, whereas the related general claim is assumed to be known. Prerequisites for developing argumentation machines for assisting scientific workflows are to account for domain-specific concepts needed to understand established hypotheses, to clarify the relationships between specific hypotheses and general claims, and to take steps towards formalization. Here, we develop a framework for formalizing hypotheses in the research field of invasion biology. We suggest conceiving hypotheses as consisting of three basic building blocks: a subject, an object, and a hypothesized relationship between them. We show how the subject-object-relation pattern can be applied to well-known hypotheses in invasion biology and demonstrate that the contained concepts are quite diverse, mirroring the complexity of the research field. We suggest a step-wise approach for modeling them to be machine-understandable using semantic web ontologies. We use the SuperPattern Ontology to categorize hypothesized relationships. Further, we recommend treating every hypothesis as part of a hierarchical system with 'parents' and 'children'. There are three ways of moving from a higher to a lower level in the hierarchy: (i) specification, (ii) decomposition, and (iii) operationalization. Specification involves exchanging subjects or objects. Decompositionmeans zooming in andmaking explicit assumptions about underlying (causal) relationships. Finally, operationalizing a hypothesis means providing concrete descriptions of what will be empirically tested.
Stichworte
Complex claims; invasion biology; ontology; scientific hypotheses
Erscheinungsjahr
2024
Titel des Konferenzbandes
Robust Argumentation Machines (RATIO 2024)
Serien- oder Zeitschriftentitel
Lecture Notes in Artificial Intelligence
Band
14638
Seite(n)
3-19
Konferenz
1st International Conference on Robust Argumentation Machines (RATIO)
Konferenzort
Bielefeld, Germany
Konferenzdatum
2024-06-05 – 2024-06-07
ISBN
978-3-031-63535-9, 978-3-031-63536-6
ISSN
2945-9133
eISSN
1611-3349
Page URI
https://pub.uni-bielefeld.de/record/2993913

Zitieren

Heger T, Algergawy A, Brinner MF, et al. Natural Language Hypotheses in Scientific Papers and How to Tame Them Suggested Steps for Formalizing Complex Scientific Claims. In: Cimiano P, Frank A, Kohlhase M, Stein B, eds. Robust Argumentation Machines (RATIO 2024) . Lecture Notes in Artificial Intelligence. Vol 14638. Cham: Springer ; 2024: 3-19.
Heger, T., Algergawy, A., Brinner, M. F., Jeschke, J. M., König-Ries, B., Mietchen, D., & Zarrieß, S. (2024). Natural Language Hypotheses in Scientific Papers and How to Tame Them Suggested Steps for Formalizing Complex Scientific Claims. In P. Cimiano, A. Frank, M. Kohlhase, & B. Stein (Eds.), Lecture Notes in Artificial Intelligence: Vol. 14638. Robust Argumentation Machines (RATIO 2024) (pp. 3-19). Cham: Springer . https://doi.org/10.1007/978-3-031-63536-6_1
Heger, Tina, Algergawy, Alsayed, Brinner, Marc Felix, Jeschke, Jonathan M., König-Ries, Birgitta, Mietchen, Daniel, and Zarrieß, Sina. 2024. “Natural Language Hypotheses in Scientific Papers and How to Tame Them Suggested Steps for Formalizing Complex Scientific Claims”. In Robust Argumentation Machines (RATIO 2024) , ed. Philipp Cimiano, Anette Frank, Michael Kohlhase, and Benno Stein, 14638:3-19. Lecture Notes in Artificial Intelligence. Cham: Springer .
Heger, T., Algergawy, A., Brinner, M. F., Jeschke, J. M., König-Ries, B., Mietchen, D., and Zarrieß, S. (2024). “Natural Language Hypotheses in Scientific Papers and How to Tame Them Suggested Steps for Formalizing Complex Scientific Claims” in Robust Argumentation Machines (RATIO 2024) , Cimiano, P., Frank, A., Kohlhase, M., and Stein, B. eds. Lecture Notes in Artificial Intelligence, vol. 14638, (Cham: Springer ), 3-19.
Heger, T., et al., 2024. Natural Language Hypotheses in Scientific Papers and How to Tame Them Suggested Steps for Formalizing Complex Scientific Claims. In P. Cimiano, et al., eds. Robust Argumentation Machines (RATIO 2024) . Lecture Notes in Artificial Intelligence. no.14638 Cham: Springer , pp. 3-19.
T. Heger, et al., “Natural Language Hypotheses in Scientific Papers and How to Tame Them Suggested Steps for Formalizing Complex Scientific Claims”, Robust Argumentation Machines (RATIO 2024) , P. Cimiano, et al., eds., Lecture Notes in Artificial Intelligence, vol. 14638, Cham: Springer , 2024, pp.3-19.
Heger, T., Algergawy, A., Brinner, M.F., Jeschke, J.M., König-Ries, B., Mietchen, D., Zarrieß, S.: Natural Language Hypotheses in Scientific Papers and How to Tame Them Suggested Steps for Formalizing Complex Scientific Claims. In: Cimiano, P., Frank, A., Kohlhase, M., and Stein, B. (eds.) Robust Argumentation Machines (RATIO 2024) . Lecture Notes in Artificial Intelligence. 14638, p. 3-19. Springer , Cham (2024).
Heger, Tina, Algergawy, Alsayed, Brinner, Marc Felix, Jeschke, Jonathan M., König-Ries, Birgitta, Mietchen, Daniel, and Zarrieß, Sina. “Natural Language Hypotheses in Scientific Papers and How to Tame Them Suggested Steps for Formalizing Complex Scientific Claims”. Robust Argumentation Machines (RATIO 2024) . Ed. Philipp Cimiano, Anette Frank, Michael Kohlhase, and Benno Stein. Cham: Springer , 2024.Vol. 14638. Lecture Notes in Artificial Intelligence. 3-19.