Weakly Supervised Claim Localization in Scientific Abstracts

Brinner MF, Zarrieß S, Heger T (2024)
In: Robust Argumentation Machines, RATIO 2024. Cimiano P, Frank A, Kohlhase M, Stein B (Eds); Lecture Notes in Artificial Intelligence, 14638. Cham: Springer : 20-38.

Konferenzbeitrag | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Herausgeber*in
Cimiano, Philipp; Frank, Anette; Kohlhase, Michael; Stein, Benno
Abstract / Bemerkung
We explore the possibility of leveraging model explainability methods for weakly supervised claim localization in scientific abstracts. The resulting approaches require only abstract-level supervision, i.e., information about the general presence of a claim in a given abstract, to extract spans of text that indicate this specific claim. We evaluate our methods on the SciFact claim verification dataset, as well as on a newly created dataset that contains expert-annotated evidence for scientific hypotheses in paper abstracts from the field of invasion biology. Our results suggest that significant performance in the claim localization task can be achieved without any explicit supervision, which increases the transferability to new domains with limited data availability. In the course of our experiments, we additionally find that injecting information from human evidence annotations into the training of a neural network classifier can lead to a significant increase in classification performance.
Stichworte
Explainability; Evidence localization; Claim verification
Erscheinungsjahr
2024
Titel des Konferenzbandes
Robust Argumentation Machines, RATIO 2024
Serien- oder Zeitschriftentitel
Lecture Notes in Artificial Intelligence
Band
14638
Seite(n)
20-38
Konferenz
1st International Conference on Robust Argumentation Machines (RATIO)
Konferenzort
Bielefeld, Germany
Konferenzdatum
2024-06-05 – 2024-06-07
ISBN
978-3-031-63535-9, 978-3-031-63536-6
ISSN
2945-9133
eISSN
1611-3349
Page URI
https://pub.uni-bielefeld.de/record/2993894

Zitieren

Brinner MF, Zarrieß S, Heger T. Weakly Supervised Claim Localization in Scientific Abstracts. In: Cimiano P, Frank A, Kohlhase M, Stein B, eds. Robust Argumentation Machines, RATIO 2024. Lecture Notes in Artificial Intelligence. Vol 14638. Cham: Springer ; 2024: 20-38.
Brinner, M. F., Zarrieß, S., & Heger, T. (2024). Weakly Supervised Claim Localization in Scientific Abstracts. In P. Cimiano, A. Frank, M. Kohlhase, & B. Stein (Eds.), Lecture Notes in Artificial Intelligence: Vol. 14638. Robust Argumentation Machines, RATIO 2024 (pp. 20-38). Cham: Springer . https://doi.org/10.1007/978-3-031-63536-6_2
Brinner, Marc Felix, Zarrieß, Sina, and Heger, Tina. 2024. “Weakly Supervised Claim Localization in Scientific Abstracts”. In Robust Argumentation Machines, RATIO 2024, ed. Philipp Cimiano, Anette Frank, Michael Kohlhase, and Benno Stein, 14638:20-38. Lecture Notes in Artificial Intelligence. Cham: Springer .
Brinner, M. F., Zarrieß, S., and Heger, T. (2024). “Weakly Supervised Claim Localization in Scientific Abstracts” in Robust Argumentation Machines, RATIO 2024, Cimiano, P., Frank, A., Kohlhase, M., and Stein, B. eds. Lecture Notes in Artificial Intelligence, vol. 14638, (Cham: Springer ), 20-38.
Brinner, M.F., Zarrieß, S., & Heger, T., 2024. Weakly Supervised Claim Localization in Scientific Abstracts. In P. Cimiano, et al., eds. Robust Argumentation Machines, RATIO 2024. Lecture Notes in Artificial Intelligence. no.14638 Cham: Springer , pp. 20-38.
M.F. Brinner, S. Zarrieß, and T. Heger, “Weakly Supervised Claim Localization in Scientific Abstracts”, Robust Argumentation Machines, RATIO 2024, P. Cimiano, et al., eds., Lecture Notes in Artificial Intelligence, vol. 14638, Cham: Springer , 2024, pp.20-38.
Brinner, M.F., Zarrieß, S., Heger, T.: Weakly Supervised Claim Localization in Scientific Abstracts. In: Cimiano, P., Frank, A., Kohlhase, M., and Stein, B. (eds.) Robust Argumentation Machines, RATIO 2024. Lecture Notes in Artificial Intelligence. 14638, p. 20-38. Springer , Cham (2024).
Brinner, Marc Felix, Zarrieß, Sina, and Heger, Tina. “Weakly Supervised Claim Localization in Scientific Abstracts”. Robust Argumentation Machines, RATIO 2024. Ed. Philipp Cimiano, Anette Frank, Michael Kohlhase, and Benno Stein. Cham: Springer , 2024.Vol. 14638. Lecture Notes in Artificial Intelligence. 20-38.