Bayesian Analysis of Multi-Factorial Experimental Designs Using SEM
Langenberg B, Helm JL, Mayer A (2024)
Multivariate Behavioral Research.
Zeitschriftenaufsatz
| E-Veröff. vor dem Druck | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Langenberg, Benedikt;
Helm, Jonathan L.;
Mayer, AxelUniBi
Abstract / Bemerkung
Latent repeated measures ANOVA (L-RM-ANOVA) has recently been proposed as an alternative to traditional repeated measures ANOVA. L-RM-ANOVA builds upon structural equation modeling and enables researchers to investigate interindividual differences in main/interaction effects, examine custom contrasts, incorporate a measurement model, and account for missing data. However, L-RM-ANOVA uses maximum likelihood and thus cannot incorporate prior information and can have poor statistical properties in small samples. We show how L-RM-ANOVA can be used with Bayesian estimation to resolve the aforementioned issues. We demonstrate how to place informative priors on model parameters that constitute main and interaction effects. We further show how to place weakly informative priors on standardized parameters which can be used when no prior information is available. We conclude that Bayesian estimation can lower Type 1 error and bias, and increase power and efficiency when priors are chosen adequately. We demonstrate the approach using a real empirical example and guide the readers through specification of the model. We argue that ANOVA tables and incomplete descriptive statistics are not sufficient information to specify informative priors, and we identify which parameter estimates should be reported in future research; thereby promoting cumulative research.
Erscheinungsjahr
2024
Zeitschriftentitel
Multivariate Behavioral Research
eISSN
1532-7906
Page URI
https://pub.uni-bielefeld.de/record/2991316
Zitieren
Langenberg B, Helm JL, Mayer A. Bayesian Analysis of Multi-Factorial Experimental Designs Using SEM. Multivariate Behavioral Research. 2024.
Langenberg, B., Helm, J. L., & Mayer, A. (2024). Bayesian Analysis of Multi-Factorial Experimental Designs Using SEM. Multivariate Behavioral Research. https://doi.org/10.1080/00273171.2024.2315557
Langenberg, Benedikt, Helm, Jonathan L., and Mayer, Axel. 2024. “Bayesian Analysis of Multi-Factorial Experimental Designs Using SEM”. Multivariate Behavioral Research.
Langenberg, B., Helm, J. L., and Mayer, A. (2024). Bayesian Analysis of Multi-Factorial Experimental Designs Using SEM. Multivariate Behavioral Research.
Langenberg, B., Helm, J.L., & Mayer, A., 2024. Bayesian Analysis of Multi-Factorial Experimental Designs Using SEM. Multivariate Behavioral Research.
B. Langenberg, J.L. Helm, and A. Mayer, “Bayesian Analysis of Multi-Factorial Experimental Designs Using SEM”, Multivariate Behavioral Research, 2024.
Langenberg, B., Helm, J.L., Mayer, A.: Bayesian Analysis of Multi-Factorial Experimental Designs Using SEM. Multivariate Behavioral Research. (2024).
Langenberg, Benedikt, Helm, Jonathan L., and Mayer, Axel. “Bayesian Analysis of Multi-Factorial Experimental Designs Using SEM”. Multivariate Behavioral Research (2024).
Daten bereitgestellt von European Bioinformatics Institute (EBI)
Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
References
Daten bereitgestellt von Europe PubMed Central.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 38984637
PubMed | Europe PMC
Suchen in