A Lagrange-Newton Approach to Smoothing-and-Mapping
Möller R (2024) .
Preprint
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Einrichtung
Abstract / Bemerkung
In this report we explore the application of the Lagrange-Newton method to the SAM (smoothing-and-mapping) problem in mobile robotics. In Lagrange-Newton SAM, the angular component of each pose vector is expressed by orientation vectors and treated through Lagrange constraints. This is different from the typical Gauss-Newton approach where variations need to be mapped back and forth between Euclidean space and a manifold suitable for rotational components. We derive equations for five different types of measurements between robot poses: translation, distance, and rotation from odometry in the plane, as well as home-vector angle and compass angle from visual homing. We demonstrate the feasibility of the Lagrange-Newton approach for a simple example related to a cleaning robot scenario.
Erscheinungsjahr
2024
Seite(n)
42
Page URI
https://pub.uni-bielefeld.de/record/2986461
Zitieren
Möller R. A Lagrange-Newton Approach to Smoothing-and-Mapping. 2024.
Möller, R. (2024). A Lagrange-Newton Approach to Smoothing-and-Mapping. https://doi.org/10.48550/arXiv.2401.13302
Möller, Ralf. 2024. “A Lagrange-Newton Approach to Smoothing-and-Mapping”.
Möller, R. (2024). A Lagrange-Newton Approach to Smoothing-and-Mapping.
Möller, R., 2024. A Lagrange-Newton Approach to Smoothing-and-Mapping.
R. Möller, “A Lagrange-Newton Approach to Smoothing-and-Mapping”, 2024.
Möller, R.: A Lagrange-Newton Approach to Smoothing-and-Mapping. (2024).
Möller, Ralf. “A Lagrange-Newton Approach to Smoothing-and-Mapping”. (2024).