A method for the estimation of a motor unit innervation zone center position evaluated with a computational sEMG model

Mechtenberg M, Schneider A (2023)
Frontiers in Neurorobotics 17: 1179224.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 4.79 MB
Autor*in
Mechtenberg, Malte; Schneider, AxelUniBi
Abstract / Bemerkung
Motion predictions for limbs can be performed using commonly called Hill-based muscle models. For this type of models, a surface electromyogram (sEMG) of the muscle serves as an input signal for the activation of the muscle model. However, the Hill model needs additional information about the mechanical system state of the muscle (current length, velocity, etc.) for a reliable prediction of the muscle force generation and, hence, the prediction of the joint motion. One feature that contains potential information about the state of the muscle is the position of the center of the innervation zone. This feature can be further extracted from the sEMG. To find the center, a wavelet-based algorithm is proposed that localizes motor unit potentials in the individual channels of a single-column sEMG array and then identifies innervation point candidates. In the final step, these innervation point candidates are clustered in a density-based manner. The center of the largest cluster is the estimated center of the innervation zone. The algorithm has been tested in a simulation. For this purpose, an sEMG simulator was developed and implemented that can compute large motor units (1,000's of muscle fibers) quickly (within seconds on a standard PC). Copyright © 2023 Mechtenberg and Schneider.
Stichworte
innervation point; motor endplate; sEMG simulation; concentrated current source; motor unit (MU); conduction velocity (CV); exoskeleton; innervation zone
Erscheinungsjahr
2023
Zeitschriftentitel
Frontiers in Neurorobotics
Band
17
Art.-Nr.
1179224
eISSN
1662-5218
Page URI
https://pub.uni-bielefeld.de/record/2981622

Zitieren

Mechtenberg M, Schneider A. A method for the estimation of a motor unit innervation zone center position evaluated with a computational sEMG model. Frontiers in Neurorobotics . 2023;17: 1179224.
Mechtenberg, M., & Schneider, A. (2023). A method for the estimation of a motor unit innervation zone center position evaluated with a computational sEMG model. Frontiers in Neurorobotics , 17, 1179224. https://doi.org/10.3389/fnbot.2023.1179224
Mechtenberg, Malte, and Schneider, Axel. 2023. “A method for the estimation of a motor unit innervation zone center position evaluated with a computational sEMG model”. Frontiers in Neurorobotics 17: 1179224.
Mechtenberg, M., and Schneider, A. (2023). A method for the estimation of a motor unit innervation zone center position evaluated with a computational sEMG model. Frontiers in Neurorobotics 17:1179224.
Mechtenberg, M., & Schneider, A., 2023. A method for the estimation of a motor unit innervation zone center position evaluated with a computational sEMG model. Frontiers in Neurorobotics , 17: 1179224.
M. Mechtenberg and A. Schneider, “A method for the estimation of a motor unit innervation zone center position evaluated with a computational sEMG model”, Frontiers in Neurorobotics , vol. 17, 2023, : 1179224.
Mechtenberg, M., Schneider, A.: A method for the estimation of a motor unit innervation zone center position evaluated with a computational sEMG model. Frontiers in Neurorobotics . 17, : 1179224 (2023).
Mechtenberg, Malte, and Schneider, Axel. “A method for the estimation of a motor unit innervation zone center position evaluated with a computational sEMG model”. Frontiers in Neurorobotics 17 (2023): 1179224.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2024-02-14T09:34:36Z
MD5 Prüfsumme
f716e7edea1904db5dcae59ec3c46bb7


Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

References

Daten bereitgestellt von Europe PubMed Central.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 37483540
PubMed | Europe PMC

Suchen in

Google Scholar