Evaluation of frequentist test statistics using constrained statistical inference in the context of the generalized linear model
Keck C, Mayer A, Rosseel Y (2023)
Health Psychology and Behavioral Medicine 11(1): 2222164.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Keck, Caroline;
Mayer, AxelUniBi;
Rosseel, Yves
Abstract / Bemerkung
When faced with a binary or count outcome, informative hypotheses can be tested in the generalized linear model using the distance statistic as well as modified versions of the Wald, the Score and the likelihood-ratio test (LRT). In contrast to classical null hypothesis testing, informative hypotheses allow to directly examine the direction or the order of the regression coefficients. Since knowledge about the practical performance of informative test statistics is missing in the theoretically oriented literature, we aim at closing this gap using simulation studies in the context of logistic and Poisson regression. We examine the effect of the number of constraints as well as the sample size on type I error rates when the hypothesis of interest can be expressed as a linear function of the regression parameters. The LRT shows the best performance in general, followed by the Score test. Furthermore, both the sample size and especially the number of constraints impact the type I error rates considerably more in logistic compared to Poisson regression. We provide an empirical data example together with R code that can be easily adapted by applied researchers. Moreover, we discuss informative hypothesis testing about effects of interest, which are a non-linear function of the regression parameters. We demonstrate this by means of a second empirical data example. © 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
Erscheinungsjahr
2023
Zeitschriftentitel
Health Psychology and Behavioral Medicine
Band
11
Ausgabe
1
Art.-Nr.
2222164
eISSN
2164-2850
Page URI
https://pub.uni-bielefeld.de/record/2980722
Zitieren
Keck C, Mayer A, Rosseel Y. Evaluation of frequentist test statistics using constrained statistical inference in the context of the generalized linear model. Health Psychology and Behavioral Medicine. 2023;11(1): 2222164.
Keck, C., Mayer, A., & Rosseel, Y. (2023). Evaluation of frequentist test statistics using constrained statistical inference in the context of the generalized linear model. Health Psychology and Behavioral Medicine, 11(1), 2222164. https://doi.org/10.1080/21642850.2023.2222164
Keck, Caroline, Mayer, Axel, and Rosseel, Yves. 2023. “Evaluation of frequentist test statistics using constrained statistical inference in the context of the generalized linear model”. Health Psychology and Behavioral Medicine 11 (1): 2222164.
Keck, C., Mayer, A., and Rosseel, Y. (2023). Evaluation of frequentist test statistics using constrained statistical inference in the context of the generalized linear model. Health Psychology and Behavioral Medicine 11:2222164.
Keck, C., Mayer, A., & Rosseel, Y., 2023. Evaluation of frequentist test statistics using constrained statistical inference in the context of the generalized linear model. Health Psychology and Behavioral Medicine, 11(1): 2222164.
C. Keck, A. Mayer, and Y. Rosseel, “Evaluation of frequentist test statistics using constrained statistical inference in the context of the generalized linear model”, Health Psychology and Behavioral Medicine, vol. 11, 2023, : 2222164.
Keck, C., Mayer, A., Rosseel, Y.: Evaluation of frequentist test statistics using constrained statistical inference in the context of the generalized linear model. Health Psychology and Behavioral Medicine. 11, : 2222164 (2023).
Keck, Caroline, Mayer, Axel, and Rosseel, Yves. “Evaluation of frequentist test statistics using constrained statistical inference in the context of the generalized linear model”. Health Psychology and Behavioral Medicine 11.1 (2023): 2222164.
Daten bereitgestellt von European Bioinformatics Institute (EBI)
Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
References
Daten bereitgestellt von Europe PubMed Central.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 37361994
PubMed | Europe PMC
Suchen in