Linking a Hypothesis Network From the Domain of Invasion Biology to a Corpus of Scientific Abstracts: The INAS Dataset

Brinner MF, Heger T, Zarrieß S (2022)
In: Proceedings of the first Workshop on Information Extraction from Scientific Publications. Stroudsburg, PA: Association for Computational Linguistics: 32-42.

Konferenzbeitrag | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
We investigate the problem of identifying the major hypothesis that is addressed in a scientific paper. To this end, we present a dataset from the domain of invasion biology that organizes a set of 954 papers into a network of fine-grained domain-specific categories of hypotheses. We carry out experiments on classifying abstracts according to these categories and present a pilot study on annotating hypothesis statements within the text. We find that hypothesis statements in our dataset are complex, varied and more or less explicit, and, importantly, spread over the whole abstract. Experiments with BERT-based classifiers show that these models are able to classify complex hypothesis statements to some extent, without being trained on sentence-level text span annotations.
Erscheinungsjahr
2022
Titel des Konferenzbandes
Proceedings of the first Workshop on Information Extraction from Scientific Publications
Seite(n)
32-42
Konferenz
The 1st Workshop on Information Extraction from Scientific Publications
Konferenzort
Online
Konferenzdatum
2022-11-20
eISBN
978-1-959429-03-6
Page URI
https://pub.uni-bielefeld.de/record/2969797

Zitieren

Brinner MF, Heger T, Zarrieß S. Linking a Hypothesis Network From the Domain of Invasion Biology to a Corpus of Scientific Abstracts: The INAS Dataset. In: Proceedings of the first Workshop on Information Extraction from Scientific Publications. Stroudsburg, PA: Association for Computational Linguistics; 2022: 32-42.
Brinner, M. F., Heger, T., & Zarrieß, S. (2022). Linking a Hypothesis Network From the Domain of Invasion Biology to a Corpus of Scientific Abstracts: The INAS Dataset. Proceedings of the first Workshop on Information Extraction from Scientific Publications, 32-42. Stroudsburg, PA: Association for Computational Linguistics.
Brinner, Marc Felix, Heger, Tina, and Zarrieß, Sina. 2022. “Linking a Hypothesis Network From the Domain of Invasion Biology to a Corpus of Scientific Abstracts: The INAS Dataset”. In Proceedings of the first Workshop on Information Extraction from Scientific Publications, 32-42. Stroudsburg, PA: Association for Computational Linguistics.
Brinner, M. F., Heger, T., and Zarrieß, S. (2022). “Linking a Hypothesis Network From the Domain of Invasion Biology to a Corpus of Scientific Abstracts: The INAS Dataset” in Proceedings of the first Workshop on Information Extraction from Scientific Publications (Stroudsburg, PA: Association for Computational Linguistics), 32-42.
Brinner, M.F., Heger, T., & Zarrieß, S., 2022. Linking a Hypothesis Network From the Domain of Invasion Biology to a Corpus of Scientific Abstracts: The INAS Dataset. In Proceedings of the first Workshop on Information Extraction from Scientific Publications. Stroudsburg, PA: Association for Computational Linguistics, pp. 32-42.
M.F. Brinner, T. Heger, and S. Zarrieß, “Linking a Hypothesis Network From the Domain of Invasion Biology to a Corpus of Scientific Abstracts: The INAS Dataset”, Proceedings of the first Workshop on Information Extraction from Scientific Publications, Stroudsburg, PA: Association for Computational Linguistics, 2022, pp.32-42.
Brinner, M.F., Heger, T., Zarrieß, S.: Linking a Hypothesis Network From the Domain of Invasion Biology to a Corpus of Scientific Abstracts: The INAS Dataset. Proceedings of the first Workshop on Information Extraction from Scientific Publications. p. 32-42. Association for Computational Linguistics, Stroudsburg, PA (2022).
Brinner, Marc Felix, Heger, Tina, and Zarrieß, Sina. “Linking a Hypothesis Network From the Domain of Invasion Biology to a Corpus of Scientific Abstracts: The INAS Dataset”. Proceedings of the first Workshop on Information Extraction from Scientific Publications. Stroudsburg, PA: Association for Computational Linguistics, 2022. 32-42.

Link(s) zu Volltext(en)
Access Level
OA Open Access

Externes Material:
Bestätigungsschreiben
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar