A Digital Light Microscopic Method for Diatom Surveys Using Embedded Acid-Cleaned Samples

Burfeid-Castellanos AM, Kloster M, Beszteri S, Postel U, Spyra M, Zurowietz M, Nattkemper TW, Beszteri B (2022)
Water 14(20): 3332.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 2.63 MB
Autor*in
Burfeid-Castellanos, Andrea M.; Kloster, Michael; Beszteri, Sára; Postel, Ute; Spyra, Marzena; Zurowietz, MartinUniBi ; Nattkemper, Tim WilhelmUniBi ; Beszteri, Bánk
Abstract / Bemerkung
Diatom identification and counting by light microscopy of permanently embedded acid-cleaned silicate shells (frustules) is a fundamental method in ecological and water quality investigations. Here we present a new variant of this method based on “digital virtual slides”, and compare it to the traditional, non-digitized light microscopy workflow on freshwater samples. We analysed three replicate slides taken from six benthic samples using two methods: (1) working directly on a light microscope (the “traditional” counting method), and (2) preparing “virtual digital slides” by high-resolution slide scanning and subsequently identifying and labelling individual valves or frustules using a web browser-based image annotation platform (the digital method). Both methods led to comparable results in terms of species richness, diatom indices and diatom community composition. Although counting by digital microscopy was slightly more time consuming, our experience points out that the digital workflow can not only improve the transparency and reusability of diatom counts but it can also increase taxonomic precision. The introduced digital workflow can also be applied for taxonomic inter-expert calibration through the web, and for producing training image sets for deep-learning-based diatom identification, making it a promising and versatile alternative or extension to traditional light microscopic diatom analyses in the future.
Erscheinungsjahr
2022
Zeitschriftentitel
Water
Band
14
Ausgabe
20
Art.-Nr.
3332
eISSN
2073-4441
Page URI
https://pub.uni-bielefeld.de/record/2966492

Zitieren

Burfeid-Castellanos AM, Kloster M, Beszteri S, et al. A Digital Light Microscopic Method for Diatom Surveys Using Embedded Acid-Cleaned Samples. Water. 2022;14(20): 3332.
Burfeid-Castellanos, A. M., Kloster, M., Beszteri, S., Postel, U., Spyra, M., Zurowietz, M., Nattkemper, T. W., et al. (2022). A Digital Light Microscopic Method for Diatom Surveys Using Embedded Acid-Cleaned Samples. Water, 14(20), 3332. https://doi.org/10.3390/w14203332
Burfeid-Castellanos, Andrea M., Kloster, Michael, Beszteri, Sára, Postel, Ute, Spyra, Marzena, Zurowietz, Martin, Nattkemper, Tim Wilhelm, and Beszteri, Bánk. 2022. “A Digital Light Microscopic Method for Diatom Surveys Using Embedded Acid-Cleaned Samples”. Water 14 (20): 3332.
Burfeid-Castellanos, A. M., Kloster, M., Beszteri, S., Postel, U., Spyra, M., Zurowietz, M., Nattkemper, T. W., and Beszteri, B. (2022). A Digital Light Microscopic Method for Diatom Surveys Using Embedded Acid-Cleaned Samples. Water 14:3332.
Burfeid-Castellanos, A.M., et al., 2022. A Digital Light Microscopic Method for Diatom Surveys Using Embedded Acid-Cleaned Samples. Water, 14(20): 3332.
A.M. Burfeid-Castellanos, et al., “A Digital Light Microscopic Method for Diatom Surveys Using Embedded Acid-Cleaned Samples”, Water, vol. 14, 2022, : 3332.
Burfeid-Castellanos, A.M., Kloster, M., Beszteri, S., Postel, U., Spyra, M., Zurowietz, M., Nattkemper, T.W., Beszteri, B.: A Digital Light Microscopic Method for Diatom Surveys Using Embedded Acid-Cleaned Samples. Water. 14, : 3332 (2022).
Burfeid-Castellanos, Andrea M., Kloster, Michael, Beszteri, Sára, Postel, Ute, Spyra, Marzena, Zurowietz, Martin, Nattkemper, Tim Wilhelm, and Beszteri, Bánk. “A Digital Light Microscopic Method for Diatom Surveys Using Embedded Acid-Cleaned Samples”. Water 14.20 (2022): 3332.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2022-10-27T14:45:25Z
MD5 Prüfsumme
76bf4cf5b2aab660c4ba5511ff706ce3


Link(s) zu Volltext(en)
Access Level
OA Open Access

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

Preprint: 10.20944/preprints202209.0203.v1

Suchen in

Google Scholar