Modeling and predicting non-linear changes in educational trajectories: The multilevel latent growth components approach

Kiefer C, Rosseel Y, Wiese BS, Mayer A (2018)
Psychological Test and Assessment Modeling 60(2): 189–22.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 509.34 KB
Autor*in
Kiefer, ChristophUniBi ; Rosseel, Yves; Wiese, Bettina S.; Mayer, AxelUniBi
Abstract / Bemerkung
The investigation of developmental trajectories is a central goal of educational science. However, modeling and predicting complex trajectories in the context of large-scale panel studies poses multiple challenges. Statistical models oftentimes need to take into account a) potentially nonlinear shapes of trajectories, b) multiple levels of analysis (e.g., individual level, university level) and c) measurement models for the typically unobservable latent constructs. In this paper, we develop a new approach, termed the multilevel latent growth components model (ML-LGCoM) that can adequately address all three challenges simultaneously. A key feature of this new approach is that it allows researchers to test contrasts of interest among latent variables in a multilevel study. In our illustrative example, we used data from the National Educational Panel Study to model the (non-linear) development of students’ satisfaction with their academic success over four years while taking into account cluster- and individual-level trajectories and measurement error.
Stichworte
multilevel structural equation modeling; latent growth components; longitudinal models; latent state trait; educational trajectories
Erscheinungsjahr
2018
Zeitschriftentitel
Psychological Test and Assessment Modeling
Band
60
Ausgabe
2
Seite(n)
189–22
eISSN
2190-0507
Page URI
https://pub.uni-bielefeld.de/record/2950353

Zitieren

Kiefer C, Rosseel Y, Wiese BS, Mayer A. Modeling and predicting non-linear changes in educational trajectories: The multilevel latent growth components approach. Psychological Test and Assessment Modeling. 2018;60(2):189–22.
Kiefer, C., Rosseel, Y., Wiese, B. S., & Mayer, A. (2018). Modeling and predicting non-linear changes in educational trajectories: The multilevel latent growth components approach. Psychological Test and Assessment Modeling, 60(2), 189–22.
Kiefer, Christoph, Rosseel, Yves, Wiese, Bettina S., and Mayer, Axel. 2018. “Modeling and predicting non-linear changes in educational trajectories: The multilevel latent growth components approach”. Psychological Test and Assessment Modeling 60 (2): 189–22.
Kiefer, C., Rosseel, Y., Wiese, B. S., and Mayer, A. (2018). Modeling and predicting non-linear changes in educational trajectories: The multilevel latent growth components approach. Psychological Test and Assessment Modeling 60, 189–22.
Kiefer, C., et al., 2018. Modeling and predicting non-linear changes in educational trajectories: The multilevel latent growth components approach. Psychological Test and Assessment Modeling, 60(2), p 189–22.
C. Kiefer, et al., “Modeling and predicting non-linear changes in educational trajectories: The multilevel latent growth components approach”, Psychological Test and Assessment Modeling, vol. 60, 2018, pp. 189–22.
Kiefer, C., Rosseel, Y., Wiese, B.S., Mayer, A.: Modeling and predicting non-linear changes in educational trajectories: The multilevel latent growth components approach. Psychological Test and Assessment Modeling. 60, 189–22 (2018).
Kiefer, Christoph, Rosseel, Yves, Wiese, Bettina S., and Mayer, Axel. “Modeling and predicting non-linear changes in educational trajectories: The multilevel latent growth components approach”. Psychological Test and Assessment Modeling 60.2 (2018): 189–22.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung - Nicht kommerziell - Keine Bearbeitungen 4.0 International (CC BY-NC-ND 4.0):
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2023-01-20T13:51:34Z
MD5 Prüfsumme
264290749913b4213ec8f28856867d46


Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar