Average Effects Based on Regressions with a Logarithmic Link Function: A New Approach with Stochastic Covariates
Kiefer C, Mayer A (2019)
Psychometrika 84(2): 422-446.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
KieferMayer2019_AAM.pdf
632.42 KB
Autor*in
Abstract / Bemerkung
Researchers often use regressions with a logarithmic link function to evaluate the effects of a treatment on a count variable. In order to judge the average effectiveness of the treatment on the original count scale, they compute average treatment effects, which are defined as the average difference between the expected outcomes under treatment and under control. Current practice is to evaluate the expected differences at every observation and use the sample mean of these differences as a point estimate of the average effect. The standard error for this average effect estimate is based on the implicit assumption that covariate values are fixed, i.e., do not vary across different samples. In this paper, we present a new way of analytically computing average effects based on regressions with log link using stochastic covariates and develop new formulas to obtain standard errors for the average effect. In a simulation study, we evaluate the statistical performance of our new estimator and compare it with the traditional approach. Our findings suggest that the new approach gives unbiased effect estimates and standard errors and outperforms the traditional approach when strong interaction and/or a skewed covariate is present.
Stichworte
Applied Mathematics;
General Psychology
Erscheinungsjahr
2019
Zeitschriftentitel
Psychometrika
Band
84
Ausgabe
2
Seite(n)
422-446
Urheberrecht / Lizenzen
ISSN
0033-3123
eISSN
1860-0980
Page URI
https://pub.uni-bielefeld.de/record/2946668
Zitieren
Kiefer C, Mayer A. Average Effects Based on Regressions with a Logarithmic Link Function: A New Approach with Stochastic Covariates. Psychometrika. 2019;84(2):422-446.
Kiefer, C., & Mayer, A. (2019). Average Effects Based on Regressions with a Logarithmic Link Function: A New Approach with Stochastic Covariates. Psychometrika, 84(2), 422-446. https://doi.org/10.1007/s11336-018-09654-1
Kiefer, Christoph, and Mayer, Axel. 2019. “Average Effects Based on Regressions with a Logarithmic Link Function: A New Approach with Stochastic Covariates”. Psychometrika 84 (2): 422-446.
Kiefer, C., and Mayer, A. (2019). Average Effects Based on Regressions with a Logarithmic Link Function: A New Approach with Stochastic Covariates. Psychometrika 84, 422-446.
Kiefer, C., & Mayer, A., 2019. Average Effects Based on Regressions with a Logarithmic Link Function: A New Approach with Stochastic Covariates. Psychometrika, 84(2), p 422-446.
C. Kiefer and A. Mayer, “Average Effects Based on Regressions with a Logarithmic Link Function: A New Approach with Stochastic Covariates”, Psychometrika, vol. 84, 2019, pp. 422-446.
Kiefer, C., Mayer, A.: Average Effects Based on Regressions with a Logarithmic Link Function: A New Approach with Stochastic Covariates. Psychometrika. 84, 422-446 (2019).
Kiefer, Christoph, and Mayer, Axel. “Average Effects Based on Regressions with a Logarithmic Link Function: A New Approach with Stochastic Covariates”. Psychometrika 84.2 (2019): 422-446.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung - Nicht kommerziell - Keine Bearbeitungen 4.0 International (CC BY-NC-ND 4.0):
Volltext(e)
Name
KieferMayer2019_AAM.pdf
632.42 KB
Access Level
Open Access
Zuletzt Hochgeladen
2023-01-20T12:58:07Z
MD5 Prüfsumme
9e117e1d53ab7a04c93dc6e00e1eeda5
Daten bereitgestellt von European Bioinformatics Institute (EBI)
Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
References
Daten bereitgestellt von Europe PubMed Central.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 30607660
PubMed | Europe PMC
Suchen in