Accounting for Latent Covariates in Average Effects from Count Regressions

Kiefer C, Mayer A (2020)
Multivariate Behavioral Research: 1-16.

Zeitschriftenaufsatz | E-Veröff. vor dem Druck | Englisch
 
Download
OA 649.16 KB
Abstract / Bemerkung
The effectiveness of a treatment on a count outcome can be assessed using a negative binomial regression, where treatment effects are defined as the difference between the expected outcome under treatment and under control. These treatment effects can to date only be estimated if all covariates are manifest (observed) variables. However, some covariates are latent variables that are measured by multiple fallible indicators. In such cases, it is important to control for measurement error of covariates in order to avoid attenuation bias and to get unbiased treatment effect estimates. In this paper, we propose a new approach to compute average and conditional treatment effects in regression models with a logarithmic link function involving multiple latent and manifest covariates. We extend the previously presented moment-based approach in several aspects: Building on a multigroup SEM framework for count variables instead of the generalized linear model, we allow for latent covariates and multiple covariates. We provide an illustrative example to explain the application and estimation in structural equation modeling software.
Stichworte
Statistics and Probability; Experimental and Cognitive Psychology; Arts and Humanities (miscellaneous); General Medicine
Erscheinungsjahr
2020
Zeitschriftentitel
Multivariate Behavioral Research
Seite(n)
1-16
ISSN
0027-3171
eISSN
1532-7906
Page URI
https://pub.uni-bielefeld.de/record/2946665

Zitieren

Kiefer C, Mayer A. Accounting for Latent Covariates in Average Effects from Count Regressions. Multivariate Behavioral Research. 2020:1-16.
Kiefer, C., & Mayer, A. (2020). Accounting for Latent Covariates in Average Effects from Count Regressions. Multivariate Behavioral Research, 1-16. https://doi.org/10.1080/00273171.2020.1751027
Kiefer, Christoph, and Mayer, Axel. 2020. “Accounting for Latent Covariates in Average Effects from Count Regressions”. Multivariate Behavioral Research, 1-16.
Kiefer, C., and Mayer, A. (2020). Accounting for Latent Covariates in Average Effects from Count Regressions. Multivariate Behavioral Research, 1-16.
Kiefer, C., & Mayer, A., 2020. Accounting for Latent Covariates in Average Effects from Count Regressions. Multivariate Behavioral Research, , p 1-16.
C. Kiefer and A. Mayer, “Accounting for Latent Covariates in Average Effects from Count Regressions”, Multivariate Behavioral Research, 2020, pp. 1-16.
Kiefer, C., Mayer, A.: Accounting for Latent Covariates in Average Effects from Count Regressions. Multivariate Behavioral Research. 1-16 (2020).
Kiefer, Christoph, and Mayer, Axel. “Accounting for Latent Covariates in Average Effects from Count Regressions”. Multivariate Behavioral Research (2020): 1-16.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung - Nicht kommerziell - Keine Bearbeitungen 4.0 International (CC BY-NC-ND 4.0):
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2023-01-20T14:33:09Z
MD5 Prüfsumme
4e6c1557752d22c6699222d3c52fc70a


Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

References

Daten bereitgestellt von Europe PubMed Central.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 32329366
PubMed | Europe PMC

Suchen in

Google Scholar