Accounting for Latent Covariates in Average Effects from Count Regressions
Kiefer C, Mayer A (2020)
Multivariate Behavioral Research: 1-16.
Zeitschriftenaufsatz
| E-Veröff. vor dem Druck | Englisch
Download
KieferMayer2020_AAM.pdf
649.16 KB
Autor*in
Abstract / Bemerkung
The effectiveness of a treatment on a count outcome can be assessed using a negative binomial regression, where treatment effects are defined as the difference between the expected outcome under treatment and under control. These treatment effects can to date only be estimated if all covariates are manifest (observed) variables. However, some covariates are latent variables that are measured by multiple fallible indicators. In such cases, it is important to control for measurement error of covariates in order to avoid attenuation bias and to get unbiased treatment effect estimates. In this paper, we propose a new approach to compute average and conditional treatment effects in regression models with a logarithmic link function involving multiple latent and manifest covariates. We extend the previously presented moment-based approach in several aspects: Building on a multigroup SEM framework for count variables instead of the generalized linear model, we allow for latent covariates and multiple covariates. We provide an illustrative example to explain the application and estimation in structural equation modeling software.
Stichworte
Statistics and Probability;
Experimental and Cognitive Psychology;
Arts and Humanities (miscellaneous);
General Medicine
Erscheinungsjahr
2020
Zeitschriftentitel
Multivariate Behavioral Research
Seite(n)
1-16
Urheberrecht / Lizenzen
ISSN
0027-3171
eISSN
1532-7906
Page URI
https://pub.uni-bielefeld.de/record/2946665
Zitieren
Kiefer C, Mayer A. Accounting for Latent Covariates in Average Effects from Count Regressions. Multivariate Behavioral Research. 2020:1-16.
Kiefer, C., & Mayer, A. (2020). Accounting for Latent Covariates in Average Effects from Count Regressions. Multivariate Behavioral Research, 1-16. https://doi.org/10.1080/00273171.2020.1751027
Kiefer, Christoph, and Mayer, Axel. 2020. “Accounting for Latent Covariates in Average Effects from Count Regressions”. Multivariate Behavioral Research, 1-16.
Kiefer, C., and Mayer, A. (2020). Accounting for Latent Covariates in Average Effects from Count Regressions. Multivariate Behavioral Research, 1-16.
Kiefer, C., & Mayer, A., 2020. Accounting for Latent Covariates in Average Effects from Count Regressions. Multivariate Behavioral Research, , p 1-16.
C. Kiefer and A. Mayer, “Accounting for Latent Covariates in Average Effects from Count Regressions”, Multivariate Behavioral Research, 2020, pp. 1-16.
Kiefer, C., Mayer, A.: Accounting for Latent Covariates in Average Effects from Count Regressions. Multivariate Behavioral Research. 1-16 (2020).
Kiefer, Christoph, and Mayer, Axel. “Accounting for Latent Covariates in Average Effects from Count Regressions”. Multivariate Behavioral Research (2020): 1-16.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung - Nicht kommerziell - Keine Bearbeitungen 4.0 International (CC BY-NC-ND 4.0):
Volltext(e)
Name
KieferMayer2020_AAM.pdf
649.16 KB
Access Level
Open Access
Zuletzt Hochgeladen
2023-01-20T14:33:09Z
MD5 Prüfsumme
4e6c1557752d22c6699222d3c52fc70a
Daten bereitgestellt von European Bioinformatics Institute (EBI)
Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
References
Daten bereitgestellt von Europe PubMed Central.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 32329366
PubMed | Europe PMC
Suchen in