Comparison of Read Mapping and Variant Calling Tools for the Analysis of Plant NGS Data

Schilbert H, Rempel A, Pucker B (2020)
Plants 9(4): 439.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 2.31 MB
Abstract / Bemerkung
High-throughput sequencing technologies have rapidly developed during the past years and have become an essential tool in plant sciences. However, the analysis of genomic data remains challenging and relies mostly on the performance of automatic pipelines. Frequently applied pipelines involve the alignment of sequence reads against a reference sequence and the identification of sequence variants. Since most benchmarking studies of bioinformatics tools for this purpose have been conducted on human datasets, there is a lack of benchmarking studies in plant sciences. In this study, we evaluated the performance of 50 different variant calling pipelines, including five read mappers and ten variant callers, on six real plant datasets of the model organism Arabidopsis thaliana. Sets of variants were evaluated based on various parameters including sensitivity and specificity. We found that all investigated tools are suitable for analysis of NGS data in plant research. When looking at different performance metrics, BWA-MEM and Novoalign were the best mappers and GATK returned the best results in the variant calling step
Stichworte
Single Nucleotide Variants (SNVs); Single Nucleotide Polymorphisms (SNPs); Insertions/Deletions (InDels); population genomics; re-sequencing; mapper; benchmarking; Next Generation Sequencing (NGS); bioinformatics; plant genomics
Erscheinungsjahr
2020
Zeitschriftentitel
Plants
Band
9
Ausgabe
4
Art.-Nr.
439
eISSN
2223-7747
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Deutsche Forschungsgemeinschaft und die Universität Bielefeld gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2942341

Zitieren

Schilbert H, Rempel A, Pucker B. Comparison of Read Mapping and Variant Calling Tools for the Analysis of Plant NGS Data. Plants. 2020;9(4): 439.
Schilbert, H., Rempel, A., & Pucker, B. (2020). Comparison of Read Mapping and Variant Calling Tools for the Analysis of Plant NGS Data. Plants, 9(4), 439. https://doi.org/10.3390/plants9040439
Schilbert, Hanna, Rempel, Andreas, and Pucker, Boas. 2020. “Comparison of Read Mapping and Variant Calling Tools for the Analysis of Plant NGS Data”. Plants 9 (4): 439.
Schilbert, H., Rempel, A., and Pucker, B. (2020). Comparison of Read Mapping and Variant Calling Tools for the Analysis of Plant NGS Data. Plants 9:439.
Schilbert, H., Rempel, A., & Pucker, B., 2020. Comparison of Read Mapping and Variant Calling Tools for the Analysis of Plant NGS Data. Plants, 9(4): 439.
H. Schilbert, A. Rempel, and B. Pucker, “Comparison of Read Mapping and Variant Calling Tools for the Analysis of Plant NGS Data”, Plants, vol. 9, 2020, : 439.
Schilbert, H., Rempel, A., Pucker, B.: Comparison of Read Mapping and Variant Calling Tools for the Analysis of Plant NGS Data. Plants. 9, : 439 (2020).
Schilbert, Hanna, Rempel, Andreas, and Pucker, Boas. “Comparison of Read Mapping and Variant Calling Tools for the Analysis of Plant NGS Data”. Plants 9.4 (2020): 439.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2020-04-07T09:02:22Z
MD5 Prüfsumme
27fc3f85976cd263d65801cd190c72f1


Link(s) zu Volltext(en)
Access Level
OA Open Access

Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

References

Daten bereitgestellt von Europe PubMed Central.

Material in PUB:
In sonstiger Relation
Gold standard of Nd1 vs TAIR10 sequence variants
Schilbert H, Rempel A, Pucker B (2020)
Bielefeld University.
Dissertation, die diesen PUB Eintrag enthält
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 32252268
PubMed | Europe PMC

Preprint: 10.1101/2020.03.10.986059

Suchen in

Google Scholar