Quantifying the Confidence in fMRI-Based Language Lateralisation Through Laterality Index Deconstruction

Wegrzyn M, Mertens M, Bien CG, Woermann FG, Labudda K (2019)
Frontiers in Neurology 10: 655.

Download
OA 4.05 MB
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Volltext vorhanden für diesen Nachweis
Autor/in
; ; ; ;
Abstract / Bemerkung
In epilepsy patients, language lateralisation is an important part of the presurgical diagnostic process. Using task-based fMRI, language lateralisation can be determined by visual inspection of activity patterns or by quantifying the difference in left- and right-hemisphere activity using variations of a basic formula [(L-R)/(L+R)]. However, the values of this laterality index (LI) depend on the choice of activity thresholds and regions of interest. The diagnostic utility of the U also depends on how its continuous values are translated into categorical decisions about a patient's language lateralisation. Here, we analysed fMRI data from 712 epilepsy patients who performed a verbal fluency task. Each fMRI data set was evaluated by a trained human rater as depicting left-sided, right-sided, or bilateral lateralisation or as being inconclusive. We used data-driven methods to define the activity thresholds and regions of interest used for LI computation and to define a classification scheme that allowed us to translate the U values into categorical decisions. By deconstructing the LI into measures of laterality (L-R) and strength (L+R), we also modelled the relationship between activation strength and conclusiveness of a data set. In a held-out data set, predictions reached 91% correct when using only conclusive data and 82% when inconclusive data were included. Although only trained on human evaluations of fMRIs, the approach generalised to the prediction of language Wada test results, allowing for significant above-chance accuracies. Compared against different existing methods of U-computation, our approach improved the identification and exclusion of inconclusive cases and ensured that decisions for the remaining data could be made with consistently high accuracies. We discuss how this approach can support clinicians in assessing fMRI data on a single-case level, deciding whether lateralisation can be determined with sufficient certainty or whether additional information is needed.
Erscheinungsjahr
Zeitschriftentitel
Frontiers in Neurology
Band
10
Art.-Nr.
655
eISSN
Finanzierungs-Informationen
Article Processing Charge funded by the Deutsche Forschungsgemeinschaft and the Open Access Publication Fund of Bielefeld University.
PUB-ID

Zitieren

Wegrzyn M, Mertens M, Bien CG, Woermann FG, Labudda K. Quantifying the Confidence in fMRI-Based Language Lateralisation Through Laterality Index Deconstruction. Frontiers in Neurology. 2019;10: 655.
Wegrzyn, M., Mertens, M., Bien, C. G., Woermann, F. G., & Labudda, K. (2019). Quantifying the Confidence in fMRI-Based Language Lateralisation Through Laterality Index Deconstruction. Frontiers in Neurology, 10, 655. doi:10.3389/fneur.2019.00655
Wegrzyn, M., Mertens, M., Bien, C. G., Woermann, F. G., and Labudda, K. (2019). Quantifying the Confidence in fMRI-Based Language Lateralisation Through Laterality Index Deconstruction. Frontiers in Neurology 10:655.
Wegrzyn, M., et al., 2019. Quantifying the Confidence in fMRI-Based Language Lateralisation Through Laterality Index Deconstruction. Frontiers in Neurology, 10: 655.
M. Wegrzyn, et al., “Quantifying the Confidence in fMRI-Based Language Lateralisation Through Laterality Index Deconstruction”, Frontiers in Neurology, vol. 10, 2019, : 655.
Wegrzyn, M., Mertens, M., Bien, C.G., Woermann, F.G., Labudda, K.: Quantifying the Confidence in fMRI-Based Language Lateralisation Through Laterality Index Deconstruction. Frontiers in Neurology. 10, : 655 (2019).
Wegrzyn, Martin, Mertens, Markus, Bien, Christian G., Woermann, Friedrich G., and Labudda, Kirsten. “Quantifying the Confidence in fMRI-Based Language Lateralisation Through Laterality Index Deconstruction”. Frontiers in Neurology 10 (2019): 655.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-07-15T06:43:01Z
MD5 Prüfsumme
f88478bee8c2696eb4ffea7c8b2335a3

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 31275236
PubMed | Europe PMC

Suchen in

Google Scholar