The genetic basis of 3-hydroxypropanoate metabolism in Cupriavidus necator H16.
Arenas-Lopez C, Locker J, Orol D, Walter F, Busche T, Kalinowski J, Minton NP, Kovacs K, Winzer K (2019)
Biotechnology for biofuels 12(1): 150.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Arenas-Lopez, Christian;
Locker, Jessica;
Orol, Diego;
Walter, Frederik;
Busche, TobiasUniBi;
Kalinowski, JörnUniBi;
Minton, Nigel P;
Kovacs, Katalin;
Winzer, Klaus
Abstract / Bemerkung
Background: 3-Hydroxypropionic acid (3-HP) is a promising platform chemical with various industrial applications. Several metabolic routes to produce 3-HP from organic substrates such as sugars or glycerol have been implemented in yeast, enterobacterial species and other microorganisms. In this study, the native 3-HP metabolism of Cupriavidus necator was investigated and manipulated as it represents a promising chassis for the production of 3-HP and other fatty acid derivatives from CO2 and H2.; Results: When testing C. necator for its tolerance towards 3-HP, it was noted that it could utilise the compound as the sole source of carbon and energy, a highly undesirable trait in the context of biological 3-HP production which required elimination. Inactivation of the methylcitrate pathway needed for propionate utilisation did not affect the organism's ability to grow on 3-HP. Putative genes involved in 3-HP degradation were identified by bioinformatics means and confirmed by transcriptomic analyses, the latter revealing considerably increased expression in the presence of 3-HP. Genes identified in this manner encoded three putative (methyl)malonate semialdehyde dehydrogenases (mmsA1, mmsA2 and mmsA3) and two putative dehydrogenases (hpdH and hbdH). These genes, which are part of three separate mmsA operons, were inactivated through deletion of the entire coding region, either singly or in various combinations, to engineer strains unable to grow on 3-HP. Whilst inactivation of single genes or double deletions could only delay but not abolish growth, a triple ∆mmsA1∆mmsA2∆mmsA3 knock-out strain was unable utilise 3-HP as the sole source of carbon and energy. Under the used conditions this strain was also unable to co-metabolise 3-HP alongside other carbon and energy sources such as fructose and CO2/H2. Further analysis suggested primary roles for the different mmsA operons in the utilisation of beta-alanine generating substrates (mmsA1), degradation of 3-HP (mmsA2), and breakdown of valine (mmsA3).; Conclusions: Three different (methyl)malonate semialdehyde dehydrogenases contribute to 3-HP breakdown in C. necator H16. The created triple ∆mmsA1∆mmsA2∆mmsA3 knock-out strain represents an ideal chassis for autotrophic 3-HP production.
Erscheinungsjahr
2019
Zeitschriftentitel
Biotechnology for biofuels
Band
12
Ausgabe
1
Art.-Nr.
150
ISSN
1754-6834
Page URI
https://pub.uni-bielefeld.de/record/2936260
Zitieren
Arenas-Lopez C, Locker J, Orol D, et al. The genetic basis of 3-hydroxypropanoate metabolism in Cupriavidus necator H16. Biotechnology for biofuels. 2019;12(1): 150.
Arenas-Lopez, C., Locker, J., Orol, D., Walter, F., Busche, T., Kalinowski, J., Minton, N. P., et al. (2019). The genetic basis of 3-hydroxypropanoate metabolism in Cupriavidus necator H16. Biotechnology for biofuels, 12(1), 150. doi:10.1186/s13068-019-1489-5
Arenas-Lopez, Christian, Locker, Jessica, Orol, Diego, Walter, Frederik, Busche, Tobias, Kalinowski, Jörn, Minton, Nigel P, Kovacs, Katalin, and Winzer, Klaus. 2019. “The genetic basis of 3-hydroxypropanoate metabolism in Cupriavidus necator H16.”. Biotechnology for biofuels 12 (1): 150.
Arenas-Lopez, C., Locker, J., Orol, D., Walter, F., Busche, T., Kalinowski, J., Minton, N. P., Kovacs, K., and Winzer, K. (2019). The genetic basis of 3-hydroxypropanoate metabolism in Cupriavidus necator H16. Biotechnology for biofuels 12:150.
Arenas-Lopez, C., et al., 2019. The genetic basis of 3-hydroxypropanoate metabolism in Cupriavidus necator H16. Biotechnology for biofuels, 12(1): 150.
C. Arenas-Lopez, et al., “The genetic basis of 3-hydroxypropanoate metabolism in Cupriavidus necator H16.”, Biotechnology for biofuels, vol. 12, 2019, : 150.
Arenas-Lopez, C., Locker, J., Orol, D., Walter, F., Busche, T., Kalinowski, J., Minton, N.P., Kovacs, K., Winzer, K.: The genetic basis of 3-hydroxypropanoate metabolism in Cupriavidus necator H16. Biotechnology for biofuels. 12, : 150 (2019).
Arenas-Lopez, Christian, Locker, Jessica, Orol, Diego, Walter, Frederik, Busche, Tobias, Kalinowski, Jörn, Minton, Nigel P, Kovacs, Katalin, and Winzer, Klaus. “The genetic basis of 3-hydroxypropanoate metabolism in Cupriavidus necator H16.”. Biotechnology for biofuels 12.1 (2019): 150.
Daten bereitgestellt von European Bioinformatics Institute (EBI)
Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
59 References
Daten bereitgestellt von Europe PubMed Central.
A proteomic view of the facultatively chemolithoautotrophic lifestyle of Ralstonia eutropha H16.
Schwartz E, Voigt B, Zuhlke D, Pohlmann A, Lenz O, Albrecht D, Schwarze A, Kohlmann Y, Krause C, Hecker M, Friedrich B., Proteomics 9(22), 2009
PMID: 19798673
Schwartz E, Voigt B, Zuhlke D, Pohlmann A, Lenz O, Albrecht D, Schwarze A, Kohlmann Y, Krause C, Hecker M, Friedrich B., Proteomics 9(22), 2009
PMID: 19798673
Dissimilation of aromatic compounds by Alcaligenes eutrophus.
Johnson BF, Stanier RY., J. Bacteriol. 107(2), 1971
PMID: 5113598
Johnson BF, Stanier RY., J. Bacteriol. 107(2), 1971
PMID: 5113598
Metabolic carbon fluxes and biosynthesis of polyhydroxyalkanoates in Ralstonia eutropha on short chain fatty acids.
Yu J, Si Y., Biotechnol. Prog. 20(4), 2004
PMID: 15296425
Yu J, Si Y., Biotechnol. Prog. 20(4), 2004
PMID: 15296425
Biosynthesis and biodegradation of 3-hydroxypropionate-containing polyesters.
Andreessen B, Steinbuchel A., Appl. Environ. Microbiol. 76(15), 2010
PMID: 20543057
Andreessen B, Steinbuchel A., Appl. Environ. Microbiol. 76(15), 2010
PMID: 20543057
Microbial synthesis of poly((R)-3-hydroxybutyrate-co-3-hydroxypropionate) from unrelated carbon sources by engineered Cupriavidus necator.
Fukui T, Suzuki M, Tsuge T, Nakamura S., Biomacromolecules 10(4), 2009
PMID: 19267466
Fukui T, Suzuki M, Tsuge T, Nakamura S., Biomacromolecules 10(4), 2009
PMID: 19267466
Rhodobacter sphaeroides uses a reductive route via propionyl coenzyme A to assimilate 3-hydroxypropionate.
Schneider K, Asao M, Carter MS, Alber BE., J. Bacteriol. 194(2), 2011
PMID: 22056933
Schneider K, Asao M, Carter MS, Alber BE., J. Bacteriol. 194(2), 2011
PMID: 22056933
Candida albicans utilizes a modified β-oxidation pathway for the degradation of toxic propionyl-CoA.
Otzen C, Bardl B, Jacobsen ID, Nett M, Brock M., J. Biol. Chem. 289(12), 2014
PMID: 24497638
Otzen C, Bardl B, Jacobsen ID, Nett M, Brock M., J. Biol. Chem. 289(12), 2014
PMID: 24497638
Development of a deletion mutant of Pseudomonas denitrificans that does not degrade 3-hydroxypropionic acid.
Zhou S, Ashok S, Ko Y, Kim DM, Park S., Appl. Microbiol. Biotechnol. 98(10), 2014
PMID: 24519457
Zhou S, Ashok S, Ko Y, Kim DM, Park S., Appl. Microbiol. Biotechnol. 98(10), 2014
PMID: 24519457
Enzymatic hydrolysis of the coenzyme a thiol esters of beta-hydroxypropionic and beta-hydroxyisobutyric acids.
RENDINA G, COON MJ., J. Biol. Chem. 225(1), 1957
PMID: 13457352
RENDINA G, COON MJ., J. Biol. Chem. 225(1), 1957
PMID: 13457352
Propionyl-coenzyme A synthase from Chloroflexus aurantiacus, a key enzyme of the 3-hydroxypropionate cycle for autotrophic CO2 fixation.
Alber BE, Fuchs G., J. Biol. Chem. 277(14), 2002
PMID: 11821399
Alber BE, Fuchs G., J. Biol. Chem. 277(14), 2002
PMID: 11821399
Studies on the aerobic utilization of synthesis gas (syngas) by wild type and recombinant strains of Ralstonia eutropha H16.
Heinrich D, Raberg M, Steinbuchel A., Microb Biotechnol 11(4), 2017
PMID: 29027357
Heinrich D, Raberg M, Steinbuchel A., Microb Biotechnol 11(4), 2017
PMID: 29027357
Acrylyl-coenzyme A reductase, an enzyme involved in the assimilation of 3-hydroxypropionate by Rhodobacter sphaeroides.
Asao M, Alber BE., J. Bacteriol. 195(20), 2013
PMID: 23955006
Asao M, Alber BE., J. Bacteriol. 195(20), 2013
PMID: 23955006
A propionate CoA-transferase of Ralstonia eutropha H16 with broad substrate specificity catalyzing the CoA thioester formation of various carboxylic acids.
Lindenkamp N, Schurmann M, Steinbuchel A., Appl. Microbiol. Biotechnol. 97(17), 2012
PMID: 23250223
Lindenkamp N, Schurmann M, Steinbuchel A., Appl. Microbiol. Biotechnol. 97(17), 2012
PMID: 23250223
Characterization of propionate CoA-transferase from Ralstonia eutropha H16.
Volodina E, Schurmann M, Lindenkamp N, Steinbuchel A., Appl. Microbiol. Biotechnol. 98(8), 2013
PMID: 24057402
Volodina E, Schurmann M, Lindenkamp N, Steinbuchel A., Appl. Microbiol. Biotechnol. 98(8), 2013
PMID: 24057402
Direct fermentation route for the production of acrylic acid.
Chu HS, Ahn JH, Yun J, Choi IS, Nam TW, Cho KM., Metab. Eng. 32(), 2015
PMID: 26319589
Chu HS, Ahn JH, Yun J, Choi IS, Nam TW, Cho KM., Metab. Eng. 32(), 2015
PMID: 26319589
Investigations on the microbial catabolism of the organic sulfur compounds TDP and DTDP in Ralstonia eutropha H16 employing DNA microarrays.
Peplinski K, Ehrenreich A, Doring C, Bomeke M, Steinbuchel A., Appl. Microbiol. Biotechnol. 88(5), 2010
PMID: 20924576
Peplinski K, Ehrenreich A, Doring C, Bomeke M, Steinbuchel A., Appl. Microbiol. Biotechnol. 88(5), 2010
PMID: 20924576
The methylcitric acid pathway in Ralstonia eutropha: new genes identified involved in propionate metabolism.
Bramer CO, Steinbuchel A., Microbiology (Reading, Engl.) 147(Pt 8), 2001
PMID: 11495997
Bramer CO, Steinbuchel A., Microbiology (Reading, Engl.) 147(Pt 8), 2001
PMID: 11495997
Production of 3-hydroxypropionic acid from glycerol by recombinant Pseudomonas denitrificans.
Zhou S, Catherine C, Rathnasingh C, Somasundar A, Park S., Biotechnol. Bioeng. 110(12), 2013
PMID: 23775313
Zhou S, Catherine C, Rathnasingh C, Somasundar A, Park S., Biotechnol. Bioeng. 110(12), 2013
PMID: 23775313
Cloning, expression and characterization of 3-hydroxyisobutyrate dehydrogenase from Pseudomonas denitrificans ATCC 13867.
Zhou S, Mohan Raj S, Ashok S, Edwardraja S, Lee SG, Park S., PLoS ONE 8(5), 2013
PMID: 23658760
Zhou S, Mohan Raj S, Ashok S, Edwardraja S, Lee SG, Park S., PLoS ONE 8(5), 2013
PMID: 23658760
Inducible gene expression system by 3-hydroxypropionic acid.
Zhou S, Ainala SK, Seol E, Nguyen TT, Park S., Biotechnol Biofuels 8(), 2015
PMID: 26500695
Zhou S, Ainala SK, Seol E, Nguyen TT, Park S., Biotechnol Biofuels 8(), 2015
PMID: 26500695
Perspectives for the biotechnological production of biofuels from CO2 and H2 using Ralstonia eutropha and other 'Knallgas' bacteria.
Brigham C., Appl. Microbiol. Biotechnol. 103(5), 2019
PMID: 30666363
Brigham C., Appl. Microbiol. Biotechnol. 103(5), 2019
PMID: 30666363
The catalytic property of 3-hydroxyisobutyrate dehydrogenase from Bacillus cereus on 3-hydroxypropionate.
Yao T, Xu L, Ying H, Huang H, Yan M., Appl. Biochem. Biotechnol. 160(3), 2009
PMID: 19517068
Yao T, Xu L, Ying H, Huang H, Yan M., Appl. Biochem. Biotechnol. 160(3), 2009
PMID: 19517068
KEGG: new perspectives on genomes, pathways, diseases and drugs.
Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K., Nucleic Acids Res. 45(D1), 2016
PMID: 27899662
Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K., Nucleic Acids Res. 45(D1), 2016
PMID: 27899662
ReadXplorer--visualization and analysis of mapped sequences.
Hilker R, Stadermann KB, Doppmeier D, Kalinowski J, Stoye J, Straube J, Winnebald J, Goesmann A., Bioinformatics 30(16), 2014
PMID: 24790157
Hilker R, Stadermann KB, Doppmeier D, Kalinowski J, Stoye J, Straube J, Winnebald J, Goesmann A., Bioinformatics 30(16), 2014
PMID: 24790157
ReadXplorer 2-detailed read mapping analysis and visualization from one single source.
Hilker R, Stadermann KB, Schwengers O, Anisiforov E, Jaenicke S, Weisshaar B, Zimmermann T, Goesmann A., Bioinformatics 32(24), 2016
PMID: 27540267
Hilker R, Stadermann KB, Schwengers O, Anisiforov E, Jaenicke S, Weisshaar B, Zimmermann T, Goesmann A., Bioinformatics 32(24), 2016
PMID: 27540267
Differential expression analysis for sequence count data.
Anders S, Huber W., Genome Biol. 11(10), 2010
PMID: 20979621
Anders S, Huber W., Genome Biol. 11(10), 2010
PMID: 20979621
Interaction between poly(3-hydroxybutyrate) granule-associated proteins as revealed by two-hybrid analysis and identification of a new phasin in Ralstonia eutropha H16.
Pfeiffer D, Jendrossek D., Microbiology (Reading, Engl.) 157(Pt 10), 2011
PMID: 21737497
Pfeiffer D, Jendrossek D., Microbiology (Reading, Engl.) 157(Pt 10), 2011
PMID: 21737497
Organic Acids: The Pools of Fixed Carbon Involved in Redox Regulation and Energy Balance in Higher Plants.
Igamberdiev AU, Eprintsev AT., Front Plant Sci 7(), 2016
PMID: 27471516
Igamberdiev AU, Eprintsev AT., Front Plant Sci 7(), 2016
PMID: 27471516
Production of 3-hydroxypropionic acid in engineered Methylobacterium extorquens AM1 and its reassimilation through a reductive route.
Yang YM, Chen WJ, Yang J, Zhou YM, Hu B, Zhang M, Zhu LP, Wang GY, Yang S., Microb. Cell Fact. 16(1), 2017
PMID: 29084554
Yang YM, Chen WJ, Yang J, Zhou YM, Hu B, Zhang M, Zhu LP, Wang GY, Yang S., Microb. Cell Fact. 16(1), 2017
PMID: 29084554
Genomic view of energy metabolism in Ralstonia eutropha H16.
Cramm R., J. Mol. Microbiol. Biotechnol. 16(1-2), 2008
PMID: 18957861
Cramm R., J. Mol. Microbiol. Biotechnol. 16(1-2), 2008
PMID: 18957861
Manipulation of Ralstonia eutropha carbon storage pathways to produce useful bio-based products.
Brigham CJ, Zhila N, Shishatskaya E, Volova TG, Sinskey AJ., Subcell. Biochem. 64(), 2012
PMID: 23080259
Brigham CJ, Zhila N, Shishatskaya E, Volova TG, Sinskey AJ., Subcell. Biochem. 64(), 2012
PMID: 23080259
Ralstonia eutropha H16 in progress: Applications beside PHAs and establishment as production platform by advanced genetic tools.
Raberg M, Volodina E, Lin K, Steinbuchel A., Crit. Rev. Biotechnol. 38(4), 2017
PMID: 29233025
Raberg M, Volodina E, Lin K, Steinbuchel A., Crit. Rev. Biotechnol. 38(4), 2017
PMID: 29233025
The Rut pathway for pyrimidine degradation: novel chemistry and toxicity problems.
Kim KS, Pelton JG, Inwood WB, Andersen U, Kustu S, Wemmer DE., J. Bacteriol. 192(16), 2010
PMID: 20400551
Kim KS, Pelton JG, Inwood WB, Andersen U, Kustu S, Wemmer DE., J. Bacteriol. 192(16), 2010
PMID: 20400551
Recent advances in biological production of 3-hydroxypropionic acid.
Kumar V, Ashok S, Park S., Biotechnol. Adv. 31(6), 2013
PMID: 23473969
Kumar V, Ashok S, Park S., Biotechnol. Adv. 31(6), 2013
PMID: 23473969
Biosynthetic pathways for 3-hydroxypropionic acid production.
Jiang X, Meng X, Xian M., Appl. Microbiol. Biotechnol. 82(6), 2009
PMID: 19221732
Jiang X, Meng X, Xian M., Appl. Microbiol. Biotechnol. 82(6), 2009
PMID: 19221732
Recent advances in the metabolic engineering of microorganisms for the production of 3-hydroxypropionic acid as C3 platform chemical.
Valdehuesa KN, Liu H, Nisola GM, Chung WJ, Lee SH, Park SJ., Appl. Microbiol. Biotechnol. 97(8), 2013
PMID: 23494623
Valdehuesa KN, Liu H, Nisola GM, Chung WJ, Lee SH, Park SJ., Appl. Microbiol. Biotechnol. 97(8), 2013
PMID: 23494623
[Utilization of cytosine and uracil by Hydrogenomonas facilis and Hydrogenomonas H16].
Kaltwasser H, Kramer J., Arch Mikrobiol 60(2), 1968
PMID: 4972447
Kaltwasser H, Kramer J., Arch Mikrobiol 60(2), 1968
PMID: 4972447
Characterisation of a 3-hydroxypropionic acid-inducible system from Pseudomonas putida for orthogonal gene expression control in Escherichia coli and Cupriavidus necator.
Hanko EKR, Minton NP, Malys N., Sci Rep 7(1), 2017
PMID: 28496205
Hanko EKR, Minton NP, Malys N., Sci Rep 7(1), 2017
PMID: 28496205
Identification of a gene cluster enabling Lactobacillus casei BL23 to utilize myo-inositol.
Yebra MJ, Zuniga M, Beaufils S, Perez-Martinez G, Deutscher J, Monedero V., Appl. Environ. Microbiol. 73(12), 2007
PMID: 17449687
Yebra MJ, Zuniga M, Beaufils S, Perez-Martinez G, Deutscher J, Monedero V., Appl. Environ. Microbiol. 73(12), 2007
PMID: 17449687
A β-Alanine Catabolism Pathway Containing a Highly Promiscuous ω-Transaminase in the 12-Aminododecanate-Degrading Pseudomonas sp. Strain AAC.
Wilding M, Peat TS, Newman J, Scott C., Appl. Environ. Microbiol. 82(13), 2016
PMID: 27107110
Wilding M, Peat TS, Newman J, Scott C., Appl. Environ. Microbiol. 82(13), 2016
PMID: 27107110
Genome sequence of the bioplastic-producing "Knallgas" bacterium Ralstonia eutropha H16.
Pohlmann A, Fricke WF, Reinecke F, Kusian B, Liesegang H, Cramm R, Eitinger T, Ewering C, Potter M, Schwartz E, Strittmatter A, Voss I, Gottschalk G, Steinbuchel A, Friedrich B, Bowien B., Nat. Biotechnol. 24(10), 2006
PMID: 16964242
Pohlmann A, Fricke WF, Reinecke F, Kusian B, Liesegang H, Cramm R, Eitinger T, Ewering C, Potter M, Schwartz E, Strittmatter A, Voss I, Gottschalk G, Steinbuchel A, Friedrich B, Bowien B., Nat. Biotechnol. 24(10), 2006
PMID: 16964242
Properties of purified methylmalonate semialdehyde dehydrogenase of Pseudomonas aeruginosa.
Bannerjee D, Sanders LE, Sokatch JR., J. Biol. Chem. 245(7), 1970
PMID: 4314598
Bannerjee D, Sanders LE, Sokatch JR., J. Biol. Chem. 245(7), 1970
PMID: 4314598
Purification and characterization of methylmalonate-semialdehyde dehydrogenase from rat liver. Identity to malonate-semialdehyde dehydrogenase.
Goodwin GW, Rougraff PM, Davis EJ, Harris RA., J. Biol. Chem. 264(25), 1989
PMID: 2768248
Goodwin GW, Rougraff PM, Davis EJ, Harris RA., J. Biol. Chem. 264(25), 1989
PMID: 2768248
Methylmalonate-semialdehyde dehydrogenase from Bacillus subtilis: substrate specificity and coenzyme A binding.
Talfournier F, Stines-Chaumeil C, Branlant G., J. Biol. Chem. 286(25), 2011
PMID: 21515690
Talfournier F, Stines-Chaumeil C, Branlant G., J. Biol. Chem. 286(25), 2011
PMID: 21515690
Regulation and evolution of malonate and propionate catabolism in proteobacteria.
Suvorova IA, Ravcheev DA, Gelfand MS., J. Bacteriol. 194(12), 2012
PMID: 22505679
Suvorova IA, Ravcheev DA, Gelfand MS., J. Bacteriol. 194(12), 2012
PMID: 22505679
The glyoxylate bypass of Ralstonia eutropha.
Wang ZX, Bramer CO, Steinbuchel A., FEMS Microbiol. Lett. 228(1), 2003
PMID: 14612238
Wang ZX, Bramer CO, Steinbuchel A., FEMS Microbiol. Lett. 228(1), 2003
PMID: 14612238
The Alcaligenes eutrophus H16 hoxX gene participates in hydrogenase regulation.
Lenz O, Schwartz E, Dernedde J, Eitinger M, Friedrich B., J. Bacteriol. 176(14), 1994
PMID: 8021224
Lenz O, Schwartz E, Dernedde J, Eitinger M, Friedrich B., J. Bacteriol. 176(14), 1994
PMID: 8021224
Formation and utilization of poly-beta-hydroxybutyric acid by Knallgas bacteria (Hydrogenomonas).
SCHLEGEL HG, GOTTSCHALK G, VON BARTHA R., Nature 191(), 1961
PMID: 13747776
SCHLEGEL HG, GOTTSCHALK G, VON BARTHA R., Nature 191(), 1961
PMID: 13747776
Altered composition of Ralstonia eutropha poly(hydroxyalkanoate) through expression of PHA synthase from Allochromatium vinosum ATCC 35206.
Aneja KK, Ashby RD, Solaiman DK., Biotechnol. Lett. 31(10), 2009
PMID: 19557308
Aneja KK, Ashby RD, Solaiman DK., Biotechnol. Lett. 31(10), 2009
PMID: 19557308
Engineering the heterotrophic carbon sources utilization range of Ralstonia eutropha H16 for applications in biotechnology.
Volodina E, Raberg M, Steinbuchel A., Crit. Rev. Biotechnol. 36(6), 2015
PMID: 26329669
Volodina E, Raberg M, Steinbuchel A., Crit. Rev. Biotechnol. 36(6), 2015
PMID: 26329669
A novel multicomponent regulatory system mediates H2 sensing in Alcaligenes eutrophus.
Lenz O, Friedrich B., Proc. Natl. Acad. Sci. U.S.A. 95(21), 1998
PMID: 9770510
Lenz O, Friedrich B., Proc. Natl. Acad. Sci. U.S.A. 95(21), 1998
PMID: 9770510
Transcriptome sequencing of the human pathogen Corynebacterium diphtheriae NCTC 13129 provides detailed insights into its transcriptional landscape and into DtxR-mediated transcriptional regulation.
Wittchen M, Busche T, Gaspar AH, Lee JH, Ton-That H, Kalinowski J, Tauch A., BMC Genomics 19(1), 2018
PMID: 29370758
Wittchen M, Busche T, Gaspar AH, Lee JH, Ton-That H, Kalinowski J, Tauch A., BMC Genomics 19(1), 2018
PMID: 29370758
Trimmomatic: a flexible trimmer for Illumina sequence data.
Bolger AM, Lohse M, Usadel B., Bioinformatics 30(15), 2014
PMID: 24695404
Bolger AM, Lohse M, Usadel B., Bioinformatics 30(15), 2014
PMID: 24695404
Fast gapped-read alignment with Bowtie 2.
Langmead B, Salzberg SL., Nat. Methods 9(4), 2012
PMID: 22388286
Langmead B, Salzberg SL., Nat. Methods 9(4), 2012
PMID: 22388286
The Sequence Alignment/Map format and SAMtools.
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R; 1000 Genome Project Data Processing Subgroup., Bioinformatics 25(16), 2009
PMID: 19505943
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R; 1000 Genome Project Data Processing Subgroup., Bioinformatics 25(16), 2009
PMID: 19505943
Database resources of the National Center for Biotechnology Information.
NCBI Resource Coordinators, Agarwala R, Barrett T, Beck J, Benson DA, Bollin C, Bolton E, Bourexis D, Brister JR, Bryant SH, Canese K, Charowhas C, Clark K, DiCuccio M, Dondoshansky I, Federhen S, Feolo M, Funk K, Geer LY, Gorelenkov V, Hoeppner M, Holmes B, Johnson M, Khotomlianski V, Kimchi A, Kimelman M, Kitts P, Klimke W, Krasnov S, Kuznetsov A, Landrum MJ, Landsman D, Lee JM, Lipman DJ, Lu Z, Madden TL, Madej T, Marchler-Bauer A, Karsch-Mizrachi I, Murphy T, Orris R, Ostell J, O'Sullivan C, Panchenko A, Phan L, Preuss D, Pruitt KD, Rodarmer K, Rubinstein W, Sayers EW, Schneider V, Schuler GD, Sherry ST, Sirotkin K, Siyan K, Slotta D, Soboleva A, Soussov V, Starchenko G, Tatusova TA, Todorov K, Trawick BW, Vakatov D, Wang Y, Ward M, Wilbur WJ, Yaschenko E, Zbicz K., Nucleic Acids Res. 44(D1), 2015
PMID: 26615191
NCBI Resource Coordinators, Agarwala R, Barrett T, Beck J, Benson DA, Bollin C, Bolton E, Bourexis D, Brister JR, Bryant SH, Canese K, Charowhas C, Clark K, DiCuccio M, Dondoshansky I, Federhen S, Feolo M, Funk K, Geer LY, Gorelenkov V, Hoeppner M, Holmes B, Johnson M, Khotomlianski V, Kimchi A, Kimelman M, Kitts P, Klimke W, Krasnov S, Kuznetsov A, Landrum MJ, Landsman D, Lee JM, Lipman DJ, Lu Z, Madden TL, Madej T, Marchler-Bauer A, Karsch-Mizrachi I, Murphy T, Orris R, Ostell J, O'Sullivan C, Panchenko A, Phan L, Preuss D, Pruitt KD, Rodarmer K, Rubinstein W, Sayers EW, Schneider V, Schuler GD, Sherry ST, Sirotkin K, Siyan K, Slotta D, Soboleva A, Soussov V, Starchenko G, Tatusova TA, Todorov K, Trawick BW, Vakatov D, Wang Y, Ward M, Wilbur WJ, Yaschenko E, Zbicz K., Nucleic Acids Res. 44(D1), 2015
PMID: 26615191
Elucidation of beta-oxidation pathways in Ralstonia eutropha H16 by examination of global gene expression.
Brigham CJ, Budde CF, Holder JW, Zeng Q, Mahan AE, Rha C, Sinskey AJ., J. Bacteriol. 192(20), 2010
PMID: 20709892
Brigham CJ, Budde CF, Holder JW, Zeng Q, Mahan AE, Rha C, Sinskey AJ., J. Bacteriol. 192(20), 2010
PMID: 20709892
Complete nucleotide sequence of pHG1: a Ralstonia eutropha H16 megaplasmid encoding key enzymes of H(2)-based ithoautotrophy and anaerobiosis.
Schwartz E, Henne A, Cramm R, Eitinger T, Friedrich B, Gottschalk G., J. Mol. Biol. 332(2), 2003
PMID: 12948488
Schwartz E, Henne A, Cramm R, Eitinger T, Friedrich B, Gottschalk G., J. Mol. Biol. 332(2), 2003
PMID: 12948488
Genome-scale reconstruction and in silico analysis of the Ralstonia eutropha H16 for polyhydroxyalkanoate synthesis, lithoautotrophic growth, and 2-methyl citric acid production.
Park JM, Kim TY, Lee SY., BMC Syst Biol 5(), 2011
PMID: 21711532
Park JM, Kim TY, Lee SY., BMC Syst Biol 5(), 2011
PMID: 21711532
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 31236137
PubMed | Europe PMC
Suchen in