Characterization of the GPR1/FUN34/YaaH protein family in the green microalga Chlamydomonas suggests their role as intracellular membrane acetate channels

Durante L, Hübner W, Lauersen KJ, Remacle C (2019)
Plant Direct 3(6): e00148.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 4.07 MB
Autor*in
Durante, Lorenzo; Hübner, WolfgangUniBi ; Lauersen, Kyle J.UniBi ; Remacle, Claire
Abstract / Bemerkung
The unicellular green microalga Chlamydomonas reinhardtii is a powerful photosynthetic model organism which is capable of heterotrophic growth on acetate as a sole carbon source. This capacity has enabled its use for investigations of perturbations in photosynthetic machinery as mutants can be recovered heterotrophically. Fixation of acetate into cellular carbon metabolism occurs first by its conversion into acetyl‐CoA by a respective synthase and the generation of succinate by the glyoxylate cycle. These metabolic steps have been recently determined to largely occur in the peroxisomes of this alga; however, little is known about the trafficking and import of acetate or its subcellular compartmentalization. Recently, the genes of five proteins belonging to the GPR1/FUN34/YaaH (GFY) superfamily were observed to exhibit increased expression in C. reinhardtii upon acetate addition, however, no further characterization has been reported. Here, we provide several lines of evidence to implicate CrGFY1–5 as channels which share structural homology with bacterial succinate‐acetate channels and specifically localize to microbodies, which are surprisingly distinct from the glyoxylate cycle‐containing peroxisomes. We demonstrate structural models, gene expression profiling, and in vivo fluorescence localization of all five isoforms in the algal cell to further support this role.
Erscheinungsjahr
2019
Zeitschriftentitel
Plant Direct
Band
3
Ausgabe
6
Art.-Nr.
e00148
ISSN
2475-4455
eISSN
2475-4455
Page URI
https://pub.uni-bielefeld.de/record/2936230

Zitieren

Durante L, Hübner W, Lauersen KJ, Remacle C. Characterization of the GPR1/FUN34/YaaH protein family in the green microalga Chlamydomonas suggests their role as intracellular membrane acetate channels. Plant Direct. 2019;3(6): e00148.
Durante, L., Hübner, W., Lauersen, K. J., & Remacle, C. (2019). Characterization of the GPR1/FUN34/YaaH protein family in the green microalga Chlamydomonas suggests their role as intracellular membrane acetate channels. Plant Direct, 3(6), e00148. doi:10.1002/pld3.148
Durante, L., Hübner, W., Lauersen, K. J., and Remacle, C. (2019). Characterization of the GPR1/FUN34/YaaH protein family in the green microalga Chlamydomonas suggests their role as intracellular membrane acetate channels. Plant Direct 3:e00148.
Durante, L., et al., 2019. Characterization of the GPR1/FUN34/YaaH protein family in the green microalga Chlamydomonas suggests their role as intracellular membrane acetate channels. Plant Direct, 3(6): e00148.
L. Durante, et al., “Characterization of the GPR1/FUN34/YaaH protein family in the green microalga Chlamydomonas suggests their role as intracellular membrane acetate channels”, Plant Direct, vol. 3, 2019, : e00148.
Durante, L., Hübner, W., Lauersen, K.J., Remacle, C.: Characterization of the GPR1/FUN34/YaaH protein family in the green microalga Chlamydomonas suggests their role as intracellular membrane acetate channels. Plant Direct. 3, : e00148 (2019).
Durante, Lorenzo, Hübner, Wolfgang, Lauersen, Kyle J., and Remacle, Claire. “Characterization of the GPR1/FUN34/YaaH protein family in the green microalga Chlamydomonas suggests their role as intracellular membrane acetate channels”. Plant Direct 3.6 (2019): e00148.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung-Nicht kommerziell 3.0 Unported (CC BY-NC 3.0):
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2020-03-20T12:24:09Z
MD5 Prüfsumme
6273e097a6024bc8d9bd4b2dd934310a

51 References

Daten bereitgestellt von Europe PubMed Central.

ALCOdb: Gene Coexpression Database for Microalgae.
Aoki Y, Okamura Y, Ohta H, Kinoshita K, Obayashi T., Plant Cell Physiol. 57(1), 2015
PMID: 26644461
Characterization, localization and functional analysis of Gpr1p, a protein affecting sensitivity to acetic acid in the yeast Yarrowia lipolytica.
Augstein A, Barth K, Gentsch M, Kohlwein SD, Barth G., Microbiology (Reading, Engl.) 149(Pt 3), 2003
PMID: 12634328
The MEME Suite.
Bailey TL, Johnson J, Grant CE, Noble WS., Nucleic Acids Res. 43(W1), 2015
PMID: 25953851
Feature-based prediction of non-classical and leaderless protein secretion.
Bendtsen JD, Jensen LJ, Blom N, Von Heijne G, Brunak S., Protein Eng. Des. Sel. 17(4), 2004
PMID: 15115854
STATE TRANSITION7-Dependent Phosphorylation Is Modulated by Changing Environmental Conditions, and Its Absence Triggers Remodeling of Photosynthetic Protein Complexes.
Bergner SV, Scholz M, Trompelt K, Barth J, Gabelein P, Steinbeck J, Xue H, Clowez S, Fucile G, Goldschmidt-Clermont M, Fufezan C, Hippler M., Plant Physiol. 168(2), 2015
PMID: 25858915
Regulation of ion channels by protein tyrosine phosphorylation.
Davis MJ, Wu X, Nurkiewicz TR, Kawasaki J, Gui P, Hill MA, Wilson E., Am. J. Physiol. Heart Circ. Physiol. 281(5), 2001
PMID: 11668044
TransportDB 2.0: a database for exploring membrane transporters in sequenced genomes from all domains of life.
Elbourne LD, Tetu SG, Hassan KA, Paulsen IT., Nucleic Acids Res. 45(D1), 2016
PMID: 27899676
Locating proteins in the cell using TargetP, SignalP and related tools.
Emanuelsson O, Brunak S, von Heijne G, Nielsen H., Nat Protoc 2(4), 2007
PMID: 17446895
The Role of Evolutionary Selection in the Dynamics of Protein Structure Evolution.
Gilson AI, Marshall-Christensen A, Choi JM, Shakhnovich EI., Biophys. J. 112(7), 2017
PMID: 28402878
The path to triacylglyceride obesity in the sta6 strain of Chlamydomonas reinhardtii.
Goodenough U, Blaby I, Casero D, Gallaher SD, Goodson C, Johnson S, Lee JH, Merchant SS, Pellegrini M, Roth R, Rusch J, Singh M, Umen JG, Weiss TL, Wulan T., Eukaryotic Cell 13(5), 2014
PMID: 24585881
Amino Acid Catabolism in Plants.
Hildebrandt TM, Nunes Nesi A, Araujo WL, Braun HP., Mol Plant 8(11), 2015
PMID: 26384576
InterProScan 5: genome-scale protein function classification.
Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G, Pesseat S, Quinn AF, Sangrador-Vegas A, Scheremetjew M, Yong SY, Lopez R, Hunter S., Bioinformatics 30(9), 2014
PMID: 24451626
A combined transmembrane topology and signal peptide prediction method.
Kall L, Krogh A, Sonnhammer EL., J. Mol. Biol. 338(5), 2004
PMID: 15111065
Template-based protein structure modeling using the RaptorX web server.
Kallberg M, Wang H, Wang S, Peng J, Wang Z, Lu H, Xu J., Nat Protoc 7(8), 2012
PMID: 22814390
Triacylglycerol mobilization is suppressed by brefeldin A in Chlamydomonas reinhardtii.
Kato N, Dong T, Bailey M, Lum T, Ingram D., Plant Cell Physiol. 54(10), 2013
PMID: 23872273
The Phyre2 web portal for protein modeling, prediction and analysis.
Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ., Nat Protoc 10(6), 2015
PMID: 25950237
A central role for the peroxisomal membrane in glyoxylate cycle function.
Kunze M, Pracharoenwattana I, Smith SM, Hartig A., Biochim. Biophys. Acta 1763(12), 2006
PMID: 17055076
Efficient phototrophic production of a high-value sesquiterpenoid from the eukaryotic microalga Chlamydomonas reinhardtii.
Lauersen KJ, Baier T, Wichmann J, Wordenweber R, Mussgnug JH, Hubner W, Huser T, Kruse O., Metab. Eng. 38(), 2016
PMID: 27474353
Targeted expression of nuclear transgenes in Chlamydomonas reinhardtii with a versatile, modular vector toolkit.
Lauersen KJ, Kruse O, Mussgnug JH., Appl. Microbiol. Biotechnol. 99(8), 2015
PMID: 25586579
An Indexed, Mapped Mutant Library Enables Reverse Genetics Studies of Biological Processes in Chlamydomonas reinhardtii.
Li X, Zhang R, Patena W, Gang SS, Blum SR, Ivanova N, Yue R, Robertson JM, Lefebvre PA, Fitz-Gibbon ST, Grossman AR, Jonikas MC., Plant Cell 28(2), 2016
PMID: 26764374
Generation of Chlamydomonas strains that efficiently express nuclear transgenes.
Neupert J, Karcher D, Bock R., Plant J. 57(6), 2008
PMID: 19036032
Transformation of chloroplast ribosomal RNA genes in Chlamydomonas: molecular and genetic characterization of integration events.
Newman SM, Boynton JE, Gillham NW, Randolph-Anderson BL, Johnson AM, Harris EH., Genetics 126(4), 1990
PMID: 1981764
Ady2p is essential for the acetate permease activity in the yeast Saccharomyces cerevisiae.
Paiva S, Devaux F, Barbosa S, Jacq C, Casal M., Yeast 21(3), 2004
PMID: 14968426
Lack of isocitrate lyase in Chlamydomonas leads to changes in carbon metabolism and in the response to oxidative stress under mixotrophic growth.
Plancke C, Vigeolas H, Hohner R, Roberty S, Emonds-Alt B, Larosa V, Willamme R, Duby F, Onga Dhali D, Thonart P, Hiligsmann S, Franck F, Eppe G, Cardol P, Hippler M, Remacle C., Plant J. 77(3), 2014
PMID: 24286363
Succinate-acetate permease from Citrobacter koseri is an anion channel that unidirectionally translocates acetate.
Qiu B, Xia B, Zhou Q, Lu Y, He M, Hasegawa K, Ma Z, Zhang F, Gu L, Mao Q, Wang F, Zhao S, Gao Z, Liao J., Cell Res. 28(6), 2018
PMID: 29588525
Profiling phosphoproteins of yeast mitochondria reveals a role of phosphorylation in assembly of the ATP synthase.
Reinders J, Wagner K, Zahedi RP, Stojanovski D, Eyrich B, van der Laan M, Rehling P, Sickmann A, Pfanner N, Meisinger C., Mol. Cell Proteomics 6(11), 2007
PMID: 17761666
The acetate uptake transporter family motif "NPAPLGL(M/S)" is essential for substrate uptake.
Ribas D, Soares-Silva I, Vieira D, Sousa-Silva M, Sa-Pessoa J, Azevedo-Silva J, Viegas SC, Arraiano CM, Diallinas G, Paiva S, Soares P, Casal M., Fungal Genet. Biol. 122(), 2018
PMID: 30339831
The polyphosphate bodies of Chlamydomonas reinhardtii possess a proton-pumping pyrophosphatase and are similar to acidocalcisomes.
Ruiz FA, Marchesini N, Seufferheld M, Govindjee , Docampo R., J. Biol. Chem. 276(49), 2001
PMID: 11579086
SATP (YaaH), a succinate-acetate transporter protein in Escherichia coli.
Sa-Pessoa J, Paiva S, Ribas D, Silva IJ, Viegas SC, Arraiano CM, Casal M., Biochem. J. 454(3), 2013
PMID: 23844911
High-efficiency transformation of Chlamydomonas reinhardtii by electroporation.
Shimogawara K, Fujiwara S, Grossman A, Usuda H., Genetics 148(4), 1998
PMID: 9560396
Profiling Chlamydomonas metabolism under dark, anoxic H2-producing conditions using a combined proteomic, transcriptomic, and metabolomic approach.
Subramanian V, Dubini A, Astling DP, Laurens LM, Old WM, Grossman AR, Posewitz MC, Seibert M., J. Proteome Res. 13(12), 2014
PMID: 25333711
Crystal structure of the bacterial acetate transporter SatP reveals that it forms a hexameric channel.
Sun P, Li J, Zhang X, Guan Z, Xiao Q, Zhao C, Song M, Zhou Y, Mou L, Ke M, Guo L, Geng J, Deng D., J. Biol. Chem. 293(50), 2018
PMID: 30333234
PredAlgo: a new subcellular localization prediction tool dedicated to green algae.
Tardif M, Atteia A, Specht M, Cogne G, Rolland N, Brugiere S, Hippler M, Ferro M, Bruley C, Peltier G, Vallon O, Cournac L., Mol. Biol. Evol. 29(12), 2012
PMID: 22826458
The TOPCONS web server for consensus prediction of membrane protein topology and signal peptides.
Tsirigos KD, Peters C, Shu N, Kall L, Elofsson A., Nucleic Acids Res. 43(W1), 2015
PMID: 25969446
SWISS-MODEL: homology modelling of protein structures and complexes.
Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TAP, Rempfer C, Bordoli L, Lepore R, Schwede T., Nucleic Acids Res. 46(W1), 2018
PMID: 29788355
Algae after dark: mechanisms to cope with anoxic/hypoxic conditions.
Yang W, Catalanotti C, Wittkopp TM, Posewitz MC, Grossman AR., Plant J. 82(3), 2015
PMID: 25752440
The I-TASSER Suite: protein structure and function prediction.
Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y., Nat. Methods 12(1), 2015
PMID: 25549265

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 31245784
PubMed | Europe PMC

Suchen in

Google Scholar