The MarR-Type Regulator MalR Is Involved in Stress-Responsive Cell Envelope Remodeling in Corynebacterium glutamicum

Huennefeld M, Persicke M, Kalinowski J, Frunzke J (2019)
FRONTIERS IN MICROBIOLOGY 10: 1039.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Huennefeld, Max; Persicke, MarcusUniBi; Kalinowski, JörnUniBi; Frunzke, Julia
Abstract / Bemerkung
It is the enormous adaptive capacity of microorganisms, which is key to their competitive success in nature, but also challenges antibiotic treatment of human diseases. To deal with a diverse set of stresses, bacteria are able to reprogram gene expression using a wide variety of transcription factors. Here, we focused on the MarR-type regulator MalR conserved in the Corynebacterineae, including the prominent pathogens Corynebacterium diphtheriae and Mycobacterium tuberculosis. In several corynebacterial species, the malR gene forms an operon with a gene encoding a universal stress protein (uspA). Chromatin affinity purification and sequencing (ChAP-Seq) analysis revealed that MalR binds more than 60 target promoters in the C. glutamicum genome as well as in the large cryptic prophage CGP3. Overproduction of MalR caused severe growth defects and an elongated cell morphology. ChAP-Seq data combined with a global transcriptome analysis of the malR overexpression strain emphasized a central role of MalR in cell envelope remodeling in response to environmental stresses. For example, prominent MalR targets are involved in peptidoglycan biosynthesis and synthesis of branched-chain fatty acids. Phenotypic microarrays suggested an altered sensitivity of a 1 malR mutant toward several beta-lactam antibiotics. Furthermore, we revealed MalR as a repressor of several prophage genes, suggesting that MalR may be involved in the control of stress-responsive induction of the large CGP3 element. In conclusion, our results emphasize MalR as a regulator involved in stress-responsive remodeling of the cell envelope of C. glutamicum and suggest a link between cell envelope stress and the control of phage gene expression.
Stichworte
MarR-type regulator; C. glutamicum; cell envelope; stress response; antibiotics; cell wall
Erscheinungsjahr
2019
Zeitschriftentitel
FRONTIERS IN MICROBIOLOGY
Band
10
Art.-Nr.
1039
ISSN
1664-302X
Page URI
https://pub.uni-bielefeld.de/record/2936019

Zitieren

Huennefeld M, Persicke M, Kalinowski J, Frunzke J. The MarR-Type Regulator MalR Is Involved in Stress-Responsive Cell Envelope Remodeling in Corynebacterium glutamicum. FRONTIERS IN MICROBIOLOGY. 2019;10: 1039.
Huennefeld, M., Persicke, M., Kalinowski, J., & Frunzke, J. (2019). The MarR-Type Regulator MalR Is Involved in Stress-Responsive Cell Envelope Remodeling in Corynebacterium glutamicum. FRONTIERS IN MICROBIOLOGY, 10, 1039. doi:10.3389/fmicb.2019.01039
Huennefeld, Max, Persicke, Marcus, Kalinowski, Jörn, and Frunzke, Julia. 2019. “The MarR-Type Regulator MalR Is Involved in Stress-Responsive Cell Envelope Remodeling in Corynebacterium glutamicum”. FRONTIERS IN MICROBIOLOGY 10: 1039.
Huennefeld, M., Persicke, M., Kalinowski, J., and Frunzke, J. (2019). The MarR-Type Regulator MalR Is Involved in Stress-Responsive Cell Envelope Remodeling in Corynebacterium glutamicum. FRONTIERS IN MICROBIOLOGY 10:1039.
Huennefeld, M., et al., 2019. The MarR-Type Regulator MalR Is Involved in Stress-Responsive Cell Envelope Remodeling in Corynebacterium glutamicum. FRONTIERS IN MICROBIOLOGY, 10: 1039.
M. Huennefeld, et al., “The MarR-Type Regulator MalR Is Involved in Stress-Responsive Cell Envelope Remodeling in Corynebacterium glutamicum”, FRONTIERS IN MICROBIOLOGY, vol. 10, 2019, : 1039.
Huennefeld, M., Persicke, M., Kalinowski, J., Frunzke, J.: The MarR-Type Regulator MalR Is Involved in Stress-Responsive Cell Envelope Remodeling in Corynebacterium glutamicum. FRONTIERS IN MICROBIOLOGY. 10, : 1039 (2019).
Huennefeld, Max, Persicke, Marcus, Kalinowski, Jörn, and Frunzke, Julia. “The MarR-Type Regulator MalR Is Involved in Stress-Responsive Cell Envelope Remodeling in Corynebacterium glutamicum”. FRONTIERS IN MICROBIOLOGY 10 (2019): 1039.

Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

79 References

Daten bereitgestellt von Europe PubMed Central.

The Mycobacterial Cell Wall--Peptidoglycan and Arabinogalactan.
Alderwick LJ, Harrison J, Lloyd GS, Birch HL., Cold Spring Harb Perspect Med 5(8), 2015
PMID: 25818664
Deletion of Cg-emb in corynebacterianeae leads to a novel truncated cell wall arabinogalactan, whereas inactivation of Cg-ubiA results in an arabinan-deficient mutant with a cell wall galactan core.
Alderwick LJ, Radmacher E, Seidel M, Gande R, Hitchen PG, Morris HR, Dell A, Sahm H, Eggeling L, Besra GS., J. Biol. Chem. 280(37), 2005
PMID: 16040600
The mar regulon: multiple resistance to antibiotics and other toxic chemicals.
Alekshun MN, Levy SB., Trends Microbiol. 7(10), 1999
PMID: 10498949
The crystal structure of MarR, a regulator of multiple antibiotic resistance, at 2.3 A resolution.
Alekshun MN, Levy SB, Mealy TR, Seaton BA, Head JF., Nat. Struct. Biol. 8(8), 2001
PMID: 11473263
MEME SUITE: tools for motif discovery and searching.
Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS., Nucleic Acids Res. 37(Web Server issue), 2009
PMID: 19458158
IpsA, a novel LacI-type regulator, is required for inositol-derived lipid formation in Corynebacteria and Mycobacteria.
Baumgart M, Luder K, Grover S, Gatgens C, Besra GS, Frunzke J., BMC Biol. 11(), 2013
PMID: 24377418
The embAB genes of Mycobacterium avium encode an arabinosyl transferase involved in cell wall arabinan biosynthesis that is the target for the antimycobacterial drug ethambutol.
Belanger AE, Besra GS, Ford ME, Mikusova K, Belisle JT, Brennan PJ, Inamine JM., Proc. Natl. Acad. Sci. U.S.A. 93(21), 1996
PMID: 8876238
Phenotype microarrays for high-throughput phenotypic testing and assay of gene function.
Bochner BR, Gadzinski P, Panomitros E., Genome Res. 11(7), 2001
PMID: 11435407
mraW, an essential gene at the dcw cluster of Escherichia coli codes for a cytoplasmic protein with methyltransferase activity.
Carrion M, Gomez MJ, Merchante-Schubert R, Dongarra S, Ayala JA., Biochimie 81(8-9), 1999
PMID: 10572301
Structured habitats and the evolution of anticompetitor toxins in bacteria.
Chao L, Levin BR., Proc. Natl. Acad. Sci. U.S.A. 78(10), 1981
PMID: 7031647
Cephalosporins
Craig W., Andes D.., 2015
Cloning the dapA dapB cluster of the lysine-secreting bacterium Corynebacterium glutamicum.
Cremer J., Eggeling L., Sahm H.., 1990

Daffé M., Draper P.., 1997
PamR, a new MarR-like regulator affecting prophages and metabolic genes expression in Bacillus subtilis.
De San Eustaquio-Campillo A, Cornilleau C, Guerin C, Carballido-Lopez R, Chastanet A., PLoS ONE 12(12), 2017
PMID: 29240826
MarR family transcription factors: dynamic variations on a common scaffold.
Deochand DK, Grove A., Crit. Rev. Biochem. Mol. Biol. 52(6), 2017
PMID: 28670937
A prophage-encoded actin-like protein required for efficient viral DNA replication in bacteria.
Donovan C, Heyer A, Pfeifer E, Polen T, Wittmann A, Kramer R, Frunzke J, Bramkamp M., Nucleic Acids Res. 43(10), 2015
PMID: 25916847
Structure and synthesis of the cell wall
Eggeling L., Besra G., Alderwick L.., 2008
Mycobacterium tuberculosis modulates its cell surface via an oligopeptide permease (Opp) transport system.
Flores-Valdez MA, Morris RP, Laval F, Daffe M, Schoolnik GK., FASEB J. 23(12), 2009
PMID: 19671666
The final goal: penicillin-binding proteins and the target of cephalosporins.
Fontana R, Cornaglia G, Ligozzi M, Mazzariol A., Clin. Microbiol. Infect. 6 Suppl 3(), 2000
PMID: 11449647
Population Heterogeneity in Corynebacterium glutamicum ATCC 13032 caused by prophage CGP3.
Frunzke J, Bramkamp M, Schweitzer JE, Bott M., J. Bacteriol. 190(14), 2008
PMID: 18487330
Molecular determinants of the hpa regulatory system of Escherichia coli: the HpaR repressor.
Galan B, Kolb A, Sanz JM, Garcia JL, Prieto MA., Nucleic Acids Res. 31(22), 2003
PMID: 14602920
Enzymatic assembly of DNA molecules up to several hundred kilobases.
Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO., Nat. Methods 6(5), 2009
PMID: 19363495
Cloning of the malic enzyme gene from Corynebacterium glutamicum and role of the enzyme in lactate metabolism.
Gourdon P, Baucher MF, Lindley ND, Guyonvarch A., Appl. Environ. Microbiol. 66(7), 2000
PMID: 10877795
The coulter principle: foundation of an industry.
Graham M.., 2003
MarR family transcription factors.
Grove A., Curr. Biol. 23(4), 2013
PMID: 23428319
Live cell imaging of SOS and prophage dynamics in isogenic bacterial populations.
Helfrich S, Pfeifer E, Kramer C, Sachs CC, Wiechert W, Kohlheyer D, Noh K, Frunzke J., Mol. Microbiol. 98(4), 2015
PMID: 26235130
Isoprenoid Pyrophosphate-Dependent Transcriptional Regulation of Carotenogenesis in Corynebacterium glutamicum.
Henke NA, Heider SAE, Hannibal S, Wendisch VF, Peters-Wendisch P., Front Microbiol 8(), 2017
PMID: 28484430
The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins.
Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Kramer R, Linke B, McHardy AC, Meyer F, Mockel B, Pfefferle W, Puhler A, Rey DA, Ruckert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A., J. Biotechnol. 104(1-3), 2003
PMID: 12948626
Identification of the phd gene cluster responsible for phenylpropanoid utilization in Corynebacterium glutamicum.
Kallscheuer N, Vogt M, Kappelmann J, Krumbach K, Noack S, Bott M, Marienhagen J., Appl. Microbiol. Biotechnol. 100(4), 2015
PMID: 26610800
Studies on the amino acid fermentation. Part 1. Production of L-glutamic acid by various microorganisms.
Kinoshita S, Udaka S, Shimono M., J. Gen. Appl. Microbiol. 50(6), 2004
PMID: 15965888
Regulation of the malic enzyme gene malE by the transcriptional regulator MalR in Corynebacterium glutamicum.
Krause JP, Polen T, Youn JW, Emer D, Eikmanns BJ, Wendisch VF., J. Biotechnol. 159(3), 2012
PMID: 22261175
The MarR family of transcriptional regulators-a structural perspective
Kumarevel T.., 2012
The bacterial universal stress protein: function and regulation.
Kvint K, Nachin L, Diez A, Nystrom T., Curr. Opin. Microbiol. 6(2), 2003
PMID: 12732303
FarR regulates the farAB-encoded efflux pump of Neisseria gonorrhoeae via an MtrR regulatory mechanism.
Lee EH, Rouquette-Loughlin C, Folster JP, Shafer WM., J. Bacteriol. 185(24), 2003
PMID: 14645274
Overexpression of malic enzyme (ME) of Mucor circinelloides improved lipid accumulation in engineered Rhodotorula glutinis.
Li Z, Sun H, Mo X, Li X, Xu B, Tian P., Appl. Microbiol. Biotechnol. 97(11), 2012
PMID: 23179623
Mycolic acids: structures, biosynthesis, and beyond.
Marrakchi H, Laneelle MA, Daffe M., Chem. Biol. 21(1), 2013
PMID: 24374164
Analysis of SOS-induced spontaneous prophage induction in Corynebacterium glutamicum at the single-cell level.
Nanda AM, Heyer A, Kramer C, Grunberger A, Kohlheyer D, Frunzke J., J. Bacteriol. 196(1), 2013
PMID: 24163339
Co-regulation of Salmonella enterica genes required for virulence and resistance to antimicrobial peptides by SlyA and PhoP/PhoQ.
Navarre WW, Halsey TA, Walthers D, Frye J, McClelland M, Potter JL, Kenney LJ, Gunn JS, Fang FC, Libby SJ., Mol. Microbiol. 56(2), 2005
PMID: 15813739
Selective silencing of foreign DNA with low GC content by the H-NS protein in Salmonella.
Navarre WW, Porwollik S, Wang Y, McClelland M, Rosen H, Libby SJ, Fang FC., Science 313(5784), 2006
PMID: 16763111
Molecular composition of the outermost capsular material of the tubercle bacillus.
Ortalo-Magne A, Dupont MA, Lemassu A, Andersen AB, Gounon P, Daffe M., Microbiology (Reading, Engl.) 141 ( Pt 7)(), 1995
PMID: 7551029
Phylogenetic distribution of DNA-binding transcription factors in bacteria and archaea.
Perez-Rueda E, Collado-Vides J, Segovia L., Comput Biol Chem 28(5-6), 2004
PMID: 15556475
How do bacteria resist human antimicrobial peptides?
Peschel A., Trends Microbiol. 10(4), 2002
PMID: 11912025
Impact of Xenogeneic Silencing on Phage-Host Interactions.
Pfeifer E, Hunnefeld M, Popa O, Frunzke J., J. Mol. Biol. (), 2019
PMID: 30796986
Silencing of cryptic prophages in Corynebacterium glutamicum.
Pfeifer E, Hunnefeld M, Popa O, Polen T, Kohlheyer D, Baumgart M, Frunzke J., Nucleic Acids Res. 44(21), 2016
PMID: 27492287
Comprehensive analysis of the Corynebacterium glutamicum transcriptome using an improved RNAseq technique.
Pfeifer-Sancar K, Mentz A, Ruckert C, Kalinowski J., BMC Genomics 14(), 2013
PMID: 24341750
Impact of malic enzymes on antibiotic and triacylglycerol production in Streptomyces coelicolor.
Rodriguez E, Navone L, Casati P, Gramajo H., Appl. Environ. Microbiol. 78(13), 2012
PMID: 22544242
Molecular cloning: a laboratory manual/Joseph Sambrook, David W. Russell.
Sambrook J., Russell D.., 2001
Multifaceted Interfaces of Bacterial Competition.
Stubbendieck RM, Straight PD., J. Bacteriol. 198(16), 2016
PMID: 27246570
The Evolution of SlyA/RovA Transcription Factors from Repressors to Countersilencers in Enterobacteriaceae.
Will WR, Brzovic P, Le Trong I, Stenkamp RE, Lawrenz MB, Karlinsey JE, Navarre WW, Main-Hester K, Miller VL, Libby SJ, Fang FC., MBio 10(2), 2019
PMID: 30837332
Regulatory properties of malic enzyme in the oleaginous yeast, Yarrowia lipolytica, and its non-involvement in lipid accumulation.
Zhang H, Zhang L, Chen H, Chen YQ, Ratledge C, Song Y, Chen W., Biotechnol. Lett. 35(12), 2013
PMID: 23892983
Direct visualization of the outer membrane of mycobacteria and corynebacteria in their native state.
Zuber B, Chami M, Houssin C, Dubochet J, Griffiths G, Daffe M., J. Bacteriol. 190(16), 2008
PMID: 18567661
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 31164873
PubMed | Europe PMC

Suchen in

Google Scholar