Segregostat: a novel concept to control phenotypic diversification dynamics on the example of Gram-negative bacteria.

Sassi H, Nguyen TM, Telek S, Gosset G, Grünberger A, Delvigne F (2019)
Microbial biotechnology 12(5): 1064-1075.

Zeitschriftenaufsatz | E-Veröff. vor dem Druck | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Sassi, Hosni; Nguyen, Thai Minh; Telek, Samuel; Gosset, Guillermo; Grünberger, AlexanderUniBi; Delvigne, Frank
Abstract / Bemerkung
Controlling and managing the degree of phenotypic diversification of microbial populations is a challenging task. This task not only requires detailed knowledge regarding diversification mechanisms but also advanced technical set-ups for the real-time analyses and control of population behaviour on single-cell level. In this work, set-up, design and operation of the so called segregostat are described which, in contrast to a traditional chemostat, allows the control of phenotypic diversification of microbial populations over time. Two exemplary case studies will be discussed, i.e. phenotypic diversification dynamics of Eschericia coli and Pseudomonas putida based on outer membrane permeabilization, emphasizing the applicability and versatility of the proposed approach. Upon nutrient limitation, cell population tends to diversify into several subpopulations exhibiting distinct phenotypic features (non-permeabilized and permeabilized cells). Online analysis leads to the determination of the ratio between cells in these two states, which in turn triggers the addition of glucose pulses in order to maintain a predefined diversification ratio. These results prove that phenotypic diversification can be controlled by means of defined pulse-frequency modulation within continuously running bioreactor set-ups. This lays the foundation for systematic studies, not only of phenotypic diversification but also for all processes where dynamics single-cell approaches are required, such as synthetic co-culture processes. © 2019 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
Erscheinungsjahr
2019
Zeitschriftentitel
Microbial biotechnology
Band
12
Ausgabe
5
Seite(n)
1064-1075
ISSN
1751-7915
Page URI
https://pub.uni-bielefeld.de/record/2935887

Zitieren

Sassi H, Nguyen TM, Telek S, Gosset G, Grünberger A, Delvigne F. Segregostat: a novel concept to control phenotypic diversification dynamics on the example of Gram-negative bacteria. Microbial biotechnology. 2019;12(5):1064-1075.
Sassi, H., Nguyen, T. M., Telek, S., Gosset, G., Grünberger, A., & Delvigne, F. (2019). Segregostat: a novel concept to control phenotypic diversification dynamics on the example of Gram-negative bacteria. Microbial biotechnology, 12(5), 1064-1075. doi:10.1111/1751-7915.13442
Sassi, Hosni, Nguyen, Thai Minh, Telek, Samuel, Gosset, Guillermo, Grünberger, Alexander, and Delvigne, Frank. 2019. “Segregostat: a novel concept to control phenotypic diversification dynamics on the example of Gram-negative bacteria.”. Microbial biotechnology 12 (5): 1064-1075.
Sassi, H., Nguyen, T. M., Telek, S., Gosset, G., Grünberger, A., and Delvigne, F. (2019). Segregostat: a novel concept to control phenotypic diversification dynamics on the example of Gram-negative bacteria. Microbial biotechnology 12, 1064-1075.
Sassi, H., et al., 2019. Segregostat: a novel concept to control phenotypic diversification dynamics on the example of Gram-negative bacteria. Microbial biotechnology, 12(5), p 1064-1075.
H. Sassi, et al., “Segregostat: a novel concept to control phenotypic diversification dynamics on the example of Gram-negative bacteria.”, Microbial biotechnology, vol. 12, 2019, pp. 1064-1075.
Sassi, H., Nguyen, T.M., Telek, S., Gosset, G., Grünberger, A., Delvigne, F.: Segregostat: a novel concept to control phenotypic diversification dynamics on the example of Gram-negative bacteria. Microbial biotechnology. 12, 1064-1075 (2019).
Sassi, Hosni, Nguyen, Thai Minh, Telek, Samuel, Gosset, Guillermo, Grünberger, Alexander, and Delvigne, Frank. “Segregostat: a novel concept to control phenotypic diversification dynamics on the example of Gram-negative bacteria.”. Microbial biotechnology 12.5 (2019): 1064-1075.

36 References

Daten bereitgestellt von Europe PubMed Central.

A functional perspective on phenotypic heterogeneity in microorganisms.
Ackermann M., Nat. Rev. Microbiol. 13(8), 2015
PMID: 26145732
A growing focus on bacterial individuality.
Ackermann M, Schreiber F., Environ. Microbiol. 17(7), 2015
PMID: 25973653
Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection.
Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H., Mol. Syst. Biol. 2(), 2006
PMID: 16738554
Phenotypic variability in bioprocessing conditions can be tracked on the basis of on-line flow cytometry and fits to a scaling law.
Baert J, Kinet R, Brognaux A, Delepierre A, Telek S, Sorensen SJ, Riber L, Fickers P, Delvigne F., Biotechnol J 10(8), 2015
PMID: 26179479
Homogenizing bacterial cell factories: Analysis and engineering of phenotypic heterogeneity.
Binder D, Drepper T, Jaeger KE, Delvigne F, Wiechert W, Kohlheyer D, Grunberger A., Metab. Eng. 42(), 2017
PMID: 28645641
Noise in eukaryotic gene expression.
Blake WJ, KAErn M, Cantor CR, Collins JJ., Nature 422(6932), 2003
PMID: 12687005
Quantifying the membrane potential during E. coli growth stages.
Bot CT, Prodan C., Biophys. Chem. 146(2-3), 2009
PMID: 20031298
Antithetic proportional‐integral feedback for reduced variance and improved control performance of stochastic reaction networks
AUTHOR UNKNOWN, 2018
A low‐cost, multiplexable, automated flow cytometry procedure for the characterization of microbial stress dynamics in bioreactors
AUTHOR UNKNOWN, 2013
Convergent peripheral pathways catalyze initial glucose catabolism in Pseudomonas putida: genomic and flux analysis.
del Castillo T, Ramos JL, Rodriguez-Herva JJ, Fuhrer T, Sauer U, Duque E., J. Bacteriol. 189(14), 2007
PMID: 17483213
Isolated microbial single cells and resulting micropopulations grow faster in controlled environments.
Dusny C, Fritzsch FS, Frick O, Schmid A., Appl. Environ. Microbiol. 78(19), 2012
PMID: 22820335
Functional roles for noise in genetic circuits.
Eldar A, Elowitz MB., Nature 467(7312), 2010
PMID: 20829787
Hungry bacteria--definition and properties of a nutritional state.
Ferenci T., Environ. Microbiol. 3(10), 2001
PMID: 11722540
Improvement of Escherichia coli production strains by modification of the phosphoenolpyruvate:sugar phosphotransferase system
AUTHOR UNKNOWN, 2005
Beyond growth rate 0.6: Corynebacterium glutamicum cultivated in highly diluted environments.
Grunberger A, van Ooyen J, Paczia N, Rohe P, Schiendzielorz G, Eggeling L, Wiechert W, Kohlheyer D, Noack S., Biotechnol. Bioeng. 110(1), 2012
PMID: 22890752
Function of pseudomonas porins in uptake and efflux.
Hancock RE, Brinkman FS., Annu. Rev. Microbiol. 56(), 2002
PMID: 12142471
Statistics and simulation of growth of single bacterial cells: illustrations with B. subtilis and E. coli.
van Heerden JH, Kempe H, Doerr A, Maarleveld T, Nordholt N, Bruggeman FJ., Sci Rep 7(1), 2017
PMID: 29170466
Stochasticity in gene expression: from theories to phenotypes.
Kaern M, Elston TC, Blake WJ, Collins JJ., Nat. Rev. Genet. 6(6), 2005
PMID: 15883588
Stochasticity of metabolism and growth at the single-cell level.
Kiviet DJ, Nghe P, Walker N, Boulineau S, Sunderlikova V, Tans SJ., Nature 514(7522), 2014
PMID: 25186725
Noise propagation in an integrated model of bacterial gene expression and growth.
Kleijn IT, Krah LHJ, Hermsen R., PLoS Comput. Biol. 14(10), 2018
PMID: 30289879
Functional roles of pulsing in genetic circuits.
Levine JH, Lin Y, Elowitz MB., Science 342(6163), 2013
PMID: 24311681
Asymmetric lipid membranes: towards more realistic model systems.
Marquardt D, Geier B, Pabst G., Membranes (Basel) 5(2), 2015
PMID: 25955841
Automated optogenetic feedback control for precise and robust regulation of gene expression and cell growth.
Milias-Argeitis A, Rullan M, Aoki SK, Buchmann P, Khammash M., Nat Commun 7(), 2016
PMID: 27562138
Biotechnological domestication of pseudomonads using synthetic biology.
Nikel PI, Martinez-Garcia E, de Lorenzo V., Nat. Rev. Microbiol. 12(5), 2014
PMID: 24736795
Escherichia coli can survive stress by noisy growth modulation.
Patange O, Schwall C, Jones M, Villava C, Griffith DA, Phillips A, Locke JCW., Nat Commun 9(1), 2018
PMID: 30559445
Limits of propidium iodide as a cell viability indicator for environmental bacteria
AUTHOR UNKNOWN, 2007
Understanding the dynamics and optimizing the performance of chemostat selection experiments
AUTHOR UNKNOWN, 0
Evolutionary pressures on microbial metabolic strategies in the chemostat.
Wortel MT, Bosdriesz E, Teusink B, Bruggeman FJ., Sci Rep 6(), 2016
PMID: 27381431
The architecture of the OmpC-MlaA complex sheds light on the maintenance of outer membrane lipid asymmetry in Escherichia coli.
Yeow J, Tan KW, Holdbrook DA, Chong ZS, Marzinek JK, Bond PJ, Chng SS., J. Biol. Chem. 293(29), 2018
PMID: 29848551
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 31141840
PubMed | Europe PMC

Suchen in

Google Scholar