A microfluidic photobioreactor for simultaneous observation and cultivation of single microalgal cells or cell aggregates.

Westerwalbesloh C, Brehl C, Weber S, Probst C, Widzgowski J, Grünberger A, Pfaff C, Nedbal L, Kohlheyer D (2019)
PloS one 14(4): e0216093.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Westerwalbesloh, Christoph; Brehl, Carl; Weber, Sophie; Probst, Christopher; Widzgowski, Janka; Grünberger, AlexanderUniBi; Pfaff, Christian; Nedbal, Ladislav; Kohlheyer, Dietrich
Abstract / Bemerkung
Microalgae are an ubiquitous and powerful driver of geochemical cycles which have formed Earth's biosphere since early in the evolution. Lately, microalgal research has been strongly stimulated by economic potential expected in biofuels, wastewater treatment, and high-value products. Similar to bacteria and other microorganisms, most work so far has been performed on the level of suspensions which typically contain millions of algal cells per millilitre. The thus obtained macroscopic parameters average cells, which may be in various phases of their cell cycle or even, in the case of microbial consortia, cells of different species. This averaging may obscure essential features which may be needed for the correct understanding and interpretation of investigated processes. In contrast to these conventional macroscopic cultivation and measuring tools, microfluidic single-cell cultivation systems represent an excellent alternative to study individual cells or a small number of mutually interacting cells in a well-defined environment. A novel microfluidic photobioreactor was developed and successfully tested by the photoautotrophic cultivation of Chlorella sorokiniana. The reported microbioreactor facilitates automated long-term cultivation of algae with controlled temperature and with an illumination adjustable over a wide range of photon flux densities. Chemical composition of the medium in the microbioreactor can be stabilised or modulated rapidly to study the response of individual cells. Furthermore, the algae are cultivated in one focal plane and separate chambers, enabling single-cell level investigation of over 100 microcolonies in parallel. The developed platform can be used for systematic growth studies, medium screening, species interaction studies, and the thorough investigation of light-dependent growth kinetics.
Erscheinungsjahr
2019
Zeitschriftentitel
PloS one
Band
14
Ausgabe
4
Art.-Nr.
e0216093
eISSN
1932-6203
Page URI
https://pub.uni-bielefeld.de/record/2935496

Zitieren

Westerwalbesloh C, Brehl C, Weber S, et al. A microfluidic photobioreactor for simultaneous observation and cultivation of single microalgal cells or cell aggregates. PloS one. 2019;14(4): e0216093.
Westerwalbesloh, C., Brehl, C., Weber, S., Probst, C., Widzgowski, J., Grünberger, A., Pfaff, C., et al. (2019). A microfluidic photobioreactor for simultaneous observation and cultivation of single microalgal cells or cell aggregates. PloS one, 14(4), e0216093. doi:10.1371/journal.pone.0216093
Westerwalbesloh, C., Brehl, C., Weber, S., Probst, C., Widzgowski, J., Grünberger, A., Pfaff, C., Nedbal, L., and Kohlheyer, D. (2019). A microfluidic photobioreactor for simultaneous observation and cultivation of single microalgal cells or cell aggregates. PloS one 14:e0216093.
Westerwalbesloh, C., et al., 2019. A microfluidic photobioreactor for simultaneous observation and cultivation of single microalgal cells or cell aggregates. PloS one, 14(4): e0216093.
C. Westerwalbesloh, et al., “A microfluidic photobioreactor for simultaneous observation and cultivation of single microalgal cells or cell aggregates.”, PloS one, vol. 14, 2019, : e0216093.
Westerwalbesloh, C., Brehl, C., Weber, S., Probst, C., Widzgowski, J., Grünberger, A., Pfaff, C., Nedbal, L., Kohlheyer, D.: A microfluidic photobioreactor for simultaneous observation and cultivation of single microalgal cells or cell aggregates. PloS one. 14, : e0216093 (2019).
Westerwalbesloh, Christoph, Brehl, Carl, Weber, Sophie, Probst, Christopher, Widzgowski, Janka, Grünberger, Alexander, Pfaff, Christian, Nedbal, Ladislav, and Kohlheyer, Dietrich. “A microfluidic photobioreactor for simultaneous observation and cultivation of single microalgal cells or cell aggregates.”. PloS one 14.4 (2019): e0216093.

40 References

Daten bereitgestellt von Europe PubMed Central.

Biofuels from microalgae.
Li Y, Horsman M, Wu N, Lan CQ, Dubois-Calero N., Biotechnol. Prog. 24(4), 2008
PMID: 18335954
Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review.
Chen CY, Yeh KL, Aisyah R, Lee DJ, Chang JS., Bioresour. Technol. 102(1), 2010
PMID: 20674344
Production of biofuels from microalgae
AUTHOR UNKNOWN, 2013
Commercial applications of algae: opportunities and constraints
AUTHOR UNKNOWN, 1994
Commercial application of microalgae other than as biofuels: a brief review
AUTHOR UNKNOWN, 2011
An overview: biomolecules from microalgae for animal feed and aquaculture.
Yaakob Z, Ali E, Zainal A, Mohamad M, Takriff MS., J Biol Res (Thessalon) 21(1), 2014
PMID: 25984489
A review on the use of microalgal consortia for wastewater treatment
AUTHOR UNKNOWN, 2017
Scenario evaluation of open pond microalgae production
AUTHOR UNKNOWN, 2013
Photobioreactors: production systems for phototrophic microorganisms.
Pulz O., Appl. Microbiol. Biotechnol. 57(3), 2001
PMID: 11759675
Growth of algal biomass in laboratory and in large-scale algal photobioreactors in the temperate climate of western Germany.
Schreiber C, Behrendt D, Huber G, Pfaff C, Widzgowski J, Ackermann B, Muller A, Zachleder V, Moudrikova S, Mojzes P, Schurr U, Grobbelaar J, Nedbal L., Bioresour. Technol. 234(), 2017
PMID: 28319762
A photobioreactor system for precision cultivation of photoautotrophic microorganisms and for high-content analysis of suspension dynamics.
Nedbal L, Trtilek M, Cerveny J, Komarek O, Pakrasi HB., Biotechnol. Bioeng. 100(5), 2008
PMID: 18383143
Bioprospecting for hyper-lipid producing microalgal strains for sustainable biofuel production.
Mutanda T, Ramesh D, Karthikeyan S, Kumari S, Anandraj A, Bux F., Bioresour. Technol. 102(1), 2010
PMID: 20624676
Discrimination and analysis of phytoplankton using a microfluidic cytometer.
Benazzi G, Holmes D, Sun T, Mowlem MC, Morgan H., IET Nanobiotechnol 1(6), 2007
PMID: 18035910
Single-cell microfluidics: opportunity for bioprocess development.
Grunberger A, Wiechert W, Kohlheyer D., Curr. Opin. Biotechnol. 29(), 2014
PMID: 24642389
Integrated microbioreactor for culture and analysis of bacteria, algae and yeast.
Au SH, Shih SC, Wheeler AR., Biomed Microdevices 13(1), 2011
PMID: 20838902
A droplet-based screen for wavelength-dependent lipid production in algae
AUTHOR UNKNOWN, 2014
Growth kinetics of microalgae in microfluidic static droplet arrays.
Dewan A, Kim J, McLean RH, Vanapalli SA, Karim MN., Biotechnol. Bioeng. 109(12), 2012
PMID: 22711504
A microfluidic photobioreactor array demonstrating high-throughput screening for microalgal oil production.
Kim HS, Weiss TL, Thapa HR, Devarenne TP, Han A., Lab Chip 14(8), 2014
PMID: 24496295
A Microfluidic Platform for Long-Term Monitoring of Algae in a Dynamic Environment.
Luke CS, Selimkhanov J, Baumgart L, Cohen SE, Golden SS, Cookson NA, Hasty J., ACS Synth Biol 5(1), 2015
PMID: 26332284
Microfluidic systems for microalgal biotechnology: A review
AUTHOR UNKNOWN, 2018
HNF—Helmholtz Nano Facility
AUTHOR UNKNOWN, 2017
Microfluidic picoliter bioreactor for microbial single-cell analysis: fabrication, system setup, and operation
AUTHOR UNKNOWN, 2013
Rapid inoculation of single bacteria into parallel picoliter fermentation chambers
AUTHOR UNKNOWN, 2015
The action spectrum, absorptance and quantum yield of photosynthesis in crop plants
AUTHOR UNKNOWN, 1971
Test of current definitions of photosynthetically active radiation against leaf photosynthesis data
AUTHOR UNKNOWN, 1972

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Spatiotemporal microbial single-cell analysis using a high-throughput microfluidics cultivation platform.
Grunberger A, Probst C, Helfrich S, Nanda A, Stute B, Wiechert W, von Lieres E, Noh K, Frunzke J, Kohlheyer D., Cytometry A 87(12), 2015
PMID: 26348020
New high-temperature Chiorella.
Sorokin C., Science 158(3805), 1967
PMID: 6057296
Enhancing microalgal oil/lipid production from Chlorella sorokiniana CY1 using deep-sea water supplemented cultivation medium
AUTHOR UNKNOWN, 2013
Relationship between presence of a mother cell wall and speciation in the unicellular microalga Nannochloris (Chlorophyta)
AUTHOR UNKNOWN, 2003
Photoinhibition of photosynthesis. An evaluation of damaging and protective mechanisms
AUTHOR UNKNOWN, 1988
Back from the dead; the curious tale of the predatory cyanobacterium Vampirovibrio chlorellavorus.
Soo RM, Woodcroft BJ, Parks DH, Tyson GW, Hugenholtz P., PeerJ 3(), 2015
PMID: 26038723
A Novel Treatment Protects Chlorella at Commercial Scale from the Predatory Bacterium Vampirovibrio chlorellavorus.
Ganuza E, Sellers CE, Bennett BW, Lyons EM, Carney LT., Front Microbiol 7(), 2016
PMID: 27379027
Single-cell computational analysis of light harvesting in a flat-panel photo-bioreactor.
Loomba V, Huber G, von Lieres E., Biotechnol Biofuels 11(), 2018
PMID: 29849766
Laboratory-scale photobiotechnology—current trends and future perspectives
AUTHOR UNKNOWN, 2017

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 31034529
PubMed | Europe PMC

Suchen in

Google Scholar