Reproduction of Large-Scale Bioreactor Conditions on Microfluidic Chips.

Ho P, Westerwalbesloh C, Kaganovitch E, Grünberger A, Neubauer P, Kohlheyer D, Lieres E von (2019)
Microorganisms 7(4).

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Autor/in
; ; ; ; ; ;
Abstract / Bemerkung
Microbial cells in industrial large-scale bioreactors are exposed to fluctuating conditions, e.g., nutrient concentration, dissolved oxygen, temperature, and pH. These inhomogeneities can influence the cell physiology and metabolism, e.g., decelerate cell growth and product formation. Microfluidic systems offer new opportunities to study such effects in great detail by examining responses to varying environmental conditions at single-cell level. However, the possibility to reproduce large-scale bioreactor conditions in microscale cultivation systems has not yet been systematically investigated. Hence, we apply computational fluid dynamics (CFD) simulations to analyze and compare three commonly used microfluidic single-cell trapping and cultivation devices that are based on (i) mother machines (MM), (ii) monolayer growth chambers (MGC), and (iii) negative dielectrophoresis (nDEP). Several representative time-variant nutrient concentration profiles are applied at the chip entry. Responses to these input signals within the studied microfluidic devices are comparatively evaluated at the positions of the cultivated cells. The results are comprehensively presented in a Bode diagram that illustrates the degree of signal damping depending on the frequency of change in the inlet concentration. As a key finding, the MM can accurately reproduce signal changes that occur within 1 s or slower, which are typical for the environmental conditions observed by single cells in large-scale bioreactors, while faster changes are levelled out. In contrast, the nDEP and MGC are found to level out signal changes occurring within 10 s or faster, which can be critical for the proposed application.
Erscheinungsjahr
2019
Zeitschriftentitel
Microorganisms
Band
7
Ausgabe
4
eISSN
2076-2607
Page URI
https://pub.uni-bielefeld.de/record/2935495

Zitieren

Ho P, Westerwalbesloh C, Kaganovitch E, et al. Reproduction of Large-Scale Bioreactor Conditions on Microfluidic Chips. Microorganisms. 2019;7(4).
Ho, P., Westerwalbesloh, C., Kaganovitch, E., Grünberger, A., Neubauer, P., Kohlheyer, D., & Lieres, E. von (2019). Reproduction of Large-Scale Bioreactor Conditions on Microfluidic Chips. Microorganisms, 7(4). doi:10.3390/microorganisms7040105
Ho, P., Westerwalbesloh, C., Kaganovitch, E., Grünberger, A., Neubauer, P., Kohlheyer, D., and Lieres, E. von (2019). Reproduction of Large-Scale Bioreactor Conditions on Microfluidic Chips. Microorganisms 7.
Ho, P., et al., 2019. Reproduction of Large-Scale Bioreactor Conditions on Microfluidic Chips. Microorganisms, 7(4).
P. Ho, et al., “Reproduction of Large-Scale Bioreactor Conditions on Microfluidic Chips.”, Microorganisms, vol. 7, 2019.
Ho, P., Westerwalbesloh, C., Kaganovitch, E., Grünberger, A., Neubauer, P., Kohlheyer, D., Lieres, E. von: Reproduction of Large-Scale Bioreactor Conditions on Microfluidic Chips. Microorganisms. 7, (2019).
Ho, Phuong, Westerwalbesloh, Christoph, Kaganovitch, Eugen, Grünberger, Alexander, Neubauer, Peter, Kohlheyer, Dietrich, and Lieres, Eric von. “Reproduction of Large-Scale Bioreactor Conditions on Microfluidic Chips.”. Microorganisms 7.4 (2019).

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 31010155
PubMed | Europe PMC

Suchen in

Google Scholar