Computer vision enables short- and long-term analysis of Lophelia pertusa polyp behaviour and colour from an underwater observatory.

Osterloff J, Nilssen I, Jarnegren J, Van Engeland T, Buhl-Mortensen P, Nattkemper TW (2019)
Scientific reports 9: 6578.

Download
OA 3.75 MB
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Volltext vorhanden für diesen Nachweis
Autor
; ; ; ; ;
Abstract / Bemerkung
An array of sensors, including an HD camera mounted on a Fixed Underwater Observatory (FUO) were used to monitor a cold-water coral (Lophelia pertusa) reef in the Lofoten-Vesteralen area from April to November 2015. Image processing and deep learning enabled extraction of time series describing changes in coral colour and polyp activity (feeding). The image data was analysed together with data from the other sensors from the same period, to provide new insights into the short- and long-term dynamics in polyp features. The results indicate that diurnal variations and tidal current influenced polyp activity, by controlling the food supply. On a longer time-scale, the coral's tissue colour changed from white in the spring to slightly red during the summer months, which can be explained by a seasonal change in food supply. Our work shows, that using an effective integrative computational approach, the image time series is a new and rich source of information to understand and monitor the dynamics in underwater environments due to the high temporal resolution and coverage enabled with FUOs.
Erscheinungsjahr
Zeitschriftentitel
Scientific reports
Band
9
Art.-Nr.
6578
eISSN
Finanzierungs-Informationen
Article Processing Charge funded by the Deutsche Forschungsgemeinschaft and the Open Access Publication Fund of Bielefeld University.
PUB-ID

Zitieren

Osterloff J, Nilssen I, Jarnegren J, Van Engeland T, Buhl-Mortensen P, Nattkemper TW. Computer vision enables short- and long-term analysis of Lophelia pertusa polyp behaviour and colour from an underwater observatory. Scientific reports. 2019;9: 6578.
Osterloff, J., Nilssen, I., Jarnegren, J., Van Engeland, T., Buhl-Mortensen, P., & Nattkemper, T. W. (2019). Computer vision enables short- and long-term analysis of Lophelia pertusa polyp behaviour and colour from an underwater observatory. Scientific reports, 9, 6578. doi:10.1038/s41598-019-41275-1
Osterloff, J., Nilssen, I., Jarnegren, J., Van Engeland, T., Buhl-Mortensen, P., and Nattkemper, T. W. (2019). Computer vision enables short- and long-term analysis of Lophelia pertusa polyp behaviour and colour from an underwater observatory. Scientific reports 9:6578.
Osterloff, J., et al., 2019. Computer vision enables short- and long-term analysis of Lophelia pertusa polyp behaviour and colour from an underwater observatory. Scientific reports, 9: 6578.
J. Osterloff, et al., “Computer vision enables short- and long-term analysis of Lophelia pertusa polyp behaviour and colour from an underwater observatory.”, Scientific reports, vol. 9, 2019, : 6578.
Osterloff, J., Nilssen, I., Jarnegren, J., Van Engeland, T., Buhl-Mortensen, P., Nattkemper, T.W.: Computer vision enables short- and long-term analysis of Lophelia pertusa polyp behaviour and colour from an underwater observatory. Scientific reports. 9, : 6578 (2019).
Osterloff, Jonas, Nilssen, Ingunn, Jarnegren, Johanna, Van Engeland, Tom, Buhl-Mortensen, Pal, and Nattkemper, Tim Wilhelm. “Computer vision enables short- and long-term analysis of Lophelia pertusa polyp behaviour and colour from an underwater observatory.”. Scientific reports 9 (2019): 6578.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-05-09T06:30:22Z

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 31036904
PubMed | Europe PMC

Suchen in

Google Scholar