Goal-related feedback guides motor exploration and redundancy resolution in human motor skill acquisition
Rohde M, Narioka K, Steil JJ, Klein LK, Ernst MO (2019)
PLOS COMPUTATIONAL BIOLOGY 15(3): e1006676.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Rohde, MariekeUniBi ;
Narioka, KenichiUniBi;
Steil, Jochen J.UniBi;
Klein, Lina K.;
Ernst, Marc O.UniBi
Einrichtung
Abstract / Bemerkung
The plasticity of the human nervous system allows us to acquire an open-ended repository of sensorimotor skills in adulthood, such as the mastery of tools, musical instruments or sports. How novel sensorimotor skills are learned from scratch is yet largely unknown. In particular, the so-called inverse mapping from goal states to motor states is underdetermined because a goal can often be achieved by many different movements (motor redundancy). How humans learn to resolve motor redundancy and by which principles they explore high-dimensional motor spaces has hardly been investigated. To study this question, we trained human participants in an unfamiliar and redundant visually-guided manual control task. We qualitatively compare the experimental results with simulation results from a population of artificial agents that learned the same task by Goal Babbling, which is an inverse-model learning approach for robotics. In Goal Babbling, goal-related feedback guides motor exploration and thereby enables robots to learn an inverse model directly from scratch, without having to learn a forward model first. In the human experiment, we tested whether different initial conditions (starting positions of the hand) influence the acquisition of motor synergies, which we identified by Principal Component Analysis in the motor space. The results show that the human participants' solutions are spatially biased towards the different starting positions in motor space and are marked by a gradual co-learning of synergies and task success, similar to the dynamics of motor learning by Goal Babbling. However, there are also differences between human learning and the Goal Babbling simulations, as humans tend to predominantly use Degrees of Freedom that do not have a large effect on the hand position, whereas in Goal Babbling, Degrees of Freedom with a large effect on hand position are used predominantly. We conclude that humans use goal-related feedback to constrain motor exploration and resolve motor redundancy when learning a new sensorimotor mapping, but in a manner that differs from the current implementation of Goal Babbling due to different constraints on motor exploration.
Author summary Even in adulthood, humans can learn to master new motor skills with unfamiliar mappings between desired goals or sensations and corresponding movements, such as playing tennis or musical instruments. To master a new skill involves the resolution of motor redundancy; that is a selection from many possible movements that all achieve the same goal. Here, we trained participants in a redundant and unfamiliar task that mapped their hand movements to shapes, in order to investigate which of the many possible redundant solution participants learn. The results show that local task feedback, which depends on the starting posture of the hand, influences participants' motor learning. We qualitatively compared the experimental results to computer simulations of artificial agents that learned the same task by Goal Babbling, i.e., a motor learning approach used in robotics, to assess if humans might learn the task following similar principles. Both the simulated agents and the participants show sensitivity to goal-directed feedback during learning, but they use different strategies to explore the movement space. We conclude that human motor learning and redundancy resolution is guided by local goal feedback, like in Goal Babbling, but that differences in motor exploration lead to different learning outcomes.
Erscheinungsjahr
2019
Zeitschriftentitel
PLOS COMPUTATIONAL BIOLOGY
Band
15
Ausgabe
3
Art.-Nr.
e1006676
ISSN
1553-734x
eISSN
1553-7358
Page URI
https://pub.uni-bielefeld.de/record/2935413
Zitieren
Rohde M, Narioka K, Steil JJ, Klein LK, Ernst MO. Goal-related feedback guides motor exploration and redundancy resolution in human motor skill acquisition. PLOS COMPUTATIONAL BIOLOGY. 2019;15(3): e1006676.
Rohde, M., Narioka, K., Steil, J. J., Klein, L. K., & Ernst, M. O. (2019). Goal-related feedback guides motor exploration and redundancy resolution in human motor skill acquisition. PLOS COMPUTATIONAL BIOLOGY, 15(3), e1006676. doi:10.1371/journal.pcbi.1006676
Rohde, Marieke, Narioka, Kenichi, Steil, Jochen J., Klein, Lina K., and Ernst, Marc O. 2019. “Goal-related feedback guides motor exploration and redundancy resolution in human motor skill acquisition”. PLOS COMPUTATIONAL BIOLOGY 15 (3): e1006676.
Rohde, M., Narioka, K., Steil, J. J., Klein, L. K., and Ernst, M. O. (2019). Goal-related feedback guides motor exploration and redundancy resolution in human motor skill acquisition. PLOS COMPUTATIONAL BIOLOGY 15:e1006676.
Rohde, M., et al., 2019. Goal-related feedback guides motor exploration and redundancy resolution in human motor skill acquisition. PLOS COMPUTATIONAL BIOLOGY, 15(3): e1006676.
M. Rohde, et al., “Goal-related feedback guides motor exploration and redundancy resolution in human motor skill acquisition”, PLOS COMPUTATIONAL BIOLOGY, vol. 15, 2019, : e1006676.
Rohde, M., Narioka, K., Steil, J.J., Klein, L.K., Ernst, M.O.: Goal-related feedback guides motor exploration and redundancy resolution in human motor skill acquisition. PLOS COMPUTATIONAL BIOLOGY. 15, : e1006676 (2019).
Rohde, Marieke, Narioka, Kenichi, Steil, Jochen J., Klein, Lina K., and Ernst, Marc O. “Goal-related feedback guides motor exploration and redundancy resolution in human motor skill acquisition”. PLOS COMPUTATIONAL BIOLOGY 15.3 (2019): e1006676.
Daten bereitgestellt von European Bioinformatics Institute (EBI)
Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
24 References
Daten bereitgestellt von Europe PubMed Central.
Computations underlying sensorimotor learning.
Wolpert DM, Flanagan JR., Curr. Opin. Neurobiol. 37(), 2015
PMID: 26719992
Wolpert DM, Flanagan JR., Curr. Opin. Neurobiol. 37(), 2015
PMID: 26719992
Optimal task-dependent changes of bimanual feedback control and adaptation.
Diedrichsen J., Curr. Biol. 17(19), 2007
PMID: 17900901
Diedrichsen J., Curr. Biol. 17(19), 2007
PMID: 17900901
The statistical determinants of adaptation rate in human reaching.
Burge J, Ernst MO, Banks MS., J Vis 8(4), 2008
PMID: 18484859
Burge J, Ernst MO, Banks MS., J Vis 8(4), 2008
PMID: 18484859
How is a motor skill learned? Change and invariance at the levels of task success and trajectory control.
Shmuelof L, Krakauer JW, Mazzoni P., J. Neurophysiol. 108(2), 2012
PMID: 22514286
Shmuelof L, Krakauer JW, Mazzoni P., J. Neurophysiol. 108(2), 2012
PMID: 22514286
Internal models for motor control and trajectory planning.
Kawato M., Curr. Opin. Neurobiol. 9(6), 1999
PMID: 10607637
Kawato M., Curr. Opin. Neurobiol. 9(6), 1999
PMID: 10607637
Mirror reversal and visual rotation are learned and consolidated via separate mechanisms: recalibrating or learning de novo?
Telgen S, Parvin D, Diedrichsen J., J. Neurosci. 34(41), 2014
PMID: 25297103
Telgen S, Parvin D, Diedrichsen J., J. Neurosci. 34(41), 2014
PMID: 25297103
Origins and early development of perception, action, and representation.
Bertenthal BI., Annu Rev Psychol 47(), 1996
PMID: 8624139
Bertenthal BI., Annu Rev Psychol 47(), 1996
PMID: 8624139
A self-organizing neural model of motor equivalent reaching and tool use by a multijoint arm.
Bullock D, Grossberg S, Guenther FH., J Cogn Neurosci 5(4), 1993
PMID: 23964916
Bullock D, Grossberg S, Guenther FH., J Cogn Neurosci 5(4), 1993
PMID: 23964916
Is visually guided reaching in early infancy a myth?
Clifton RK, Muir DW, Ashmead DH, Clarkson MG., Child Dev 64(4), 1993
PMID: 8404258
Clifton RK, Muir DW, Ashmead DH, Clarkson MG., Child Dev 64(4), 1993
PMID: 8404258
The effect of posture on early reaching movements.
Out L, Van Soest AJ, Savelsbergh GJ, Hopkins B., J Mot Behav 30(3), 1998
PMID: 20037083
Out L, Van Soest AJ, Savelsbergh GJ, Hopkins B., J Mot Behav 30(3), 1998
PMID: 20037083
Model learning for robot control: a survey.
Nguyen-Tuong D, Peters J., Cogn Process 12(4), 2011
PMID: 21487784
Nguyen-Tuong D, Peters J., Cogn Process 12(4), 2011
PMID: 21487784
Differences in adaptation rates after virtual surgeries provide direct evidence for modularity.
Berger DJ, Gentner R, Edmunds T, Pai DK, d'Avella A., J. Neurosci. 33(30), 2013
PMID: 23884944
Berger DJ, Gentner R, Edmunds T, Pai DK, d'Avella A., J. Neurosci. 33(30), 2013
PMID: 23884944
Combinations of muscle synergies in the construction of a natural motor behavior.
d'Avella A, Saltiel P, Bizzi E., Nat. Neurosci. 6(3), 2003
PMID: 12563264
d'Avella A, Saltiel P, Bizzi E., Nat. Neurosci. 6(3), 2003
PMID: 12563264
Postural hand synergies for tool use.
Santello M, Flanders M, Soechting JF., J. Neurosci. 18(23), 1998
PMID: 9822764
Santello M, Flanders M, Soechting JF., J. Neurosci. 18(23), 1998
PMID: 9822764
Optimal feedback control as a theory of motor coordination.
Todorov E, Jordan MI., Nat. Neurosci. 5(11), 2002
PMID: 12404008
Todorov E, Jordan MI., Nat. Neurosci. 5(11), 2002
PMID: 12404008
Toward a new theory of motor synergies.
Latash ML, Scholz JP, Schoner G., Motor Control 11(3), 2007
PMID: 17715460
Latash ML, Scholz JP, Schoner G., Motor Control 11(3), 2007
PMID: 17715460
Decomposition of variability in the execution of goal-oriented tasks: three components of skill improvement.
Muller H, Sternad D., J Exp Psychol Hum Percept Perform 30(1), 2004
PMID: 14769078
Muller H, Sternad D., J Exp Psychol Hum Percept Perform 30(1), 2004
PMID: 14769078
Hand-held tools with complex kinematics are efficiently incorporated into movement planning and online control.
Baugh LA, Hoe E, Flanagan JR., J. Neurophysiol. 108(7), 2012
PMID: 22773780
Baugh LA, Hoe E, Flanagan JR., J. Neurophysiol. 108(7), 2012
PMID: 22773780
Remapping hand movements in a novel geometrical environment.
Mosier KM, Scheidt RA, Acosta S, Mussa-Ivaldi FA., J. Neurophysiol. 94(6), 2005
PMID: 16148276
Mosier KM, Scheidt RA, Acosta S, Mussa-Ivaldi FA., J. Neurophysiol. 94(6), 2005
PMID: 16148276
Eye-hand coordination during learning of a novel visuomotor task.
Sailer U, Flanagan JR, Johansson RS., J. Neurosci. 25(39), 2005
PMID: 16192373
Sailer U, Flanagan JR, Johansson RS., J. Neurosci. 25(39), 2005
PMID: 16192373
Temporal structure of motor variability is dynamically regulated and predicts motor learning ability.
Wu HG, Miyamoto YR, Gonzalez Castro LN, Olveczky BP, Smith MA., Nat. Neurosci. 17(2), 2014
PMID: 24413700
Wu HG, Miyamoto YR, Gonzalez Castro LN, Olveczky BP, Smith MA., Nat. Neurosci. 17(2), 2014
PMID: 24413700
Contributions of online visual feedback to the learning and generalization of novel finger coordination patterns.
Liu X, Scheidt RA., J. Neurophysiol. 99(5), 2008
PMID: 18353914
Liu X, Scheidt RA., J. Neurophysiol. 99(5), 2008
PMID: 18353914
Adaptation to visual feedback delay in a redundant motor task.
Farshchiansadegh A, Ranganathan R, Casadio M, Mussa-Ivaldi FA., J. Neurophysiol. 113(2), 2014
PMID: 25339704
Farshchiansadegh A, Ranganathan R, Casadio M, Mussa-Ivaldi FA., J. Neurophysiol. 113(2), 2014
PMID: 25339704
Recommended effect size statistics for repeated measures designs.
Bakeman R., Behav Res Methods 37(3), 2005
PMID: 16405133
Bakeman R., Behav Res Methods 37(3), 2005
PMID: 16405133
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 30835770
PubMed | Europe PMC
Suchen in