On a Class of Infinite-Dimensional Singular Stochastic Control Problems

Federico S, Ferrari G, Riedel F, Röckner M (2019) Center for Mathematical Economics Working Papers; 614.
Bielefeld: Center for Mathematical Economics.

Diskussionspapier | Veröffentlicht | Englisch
 
Download
OA 523.94 KB
Abstract / Bemerkung
We study a class of infinite-dimensional singular stochastic control problems with applications in economic theory and finance. The control process linearly affects an abstract evolution equation on a suitable partially-ordered infinite-dimensional space X, it takes values in the positive cone of X, and it has right-continuous and nondecreasing paths. We first provide a rigorous formulation of the problem by properly defining the controlled dynamics and integrals with respect to the control process. We then exploit the concave structure of our problem and derive necessary and sufficient first-order conditions for optimality. The latter are finally exploited in a specification of the model where we find an explicit expression of the optimal control. The techniques used are those of semigroup theory, vector-valued integration, convex analysis, and general theory of stochastic processes.
Stichworte
infinite-dimensional singular stochastic control; semigroup theory; vector-valued integration; first-order conditions; Bank-El Karoui's representation theorem; irreversible investment.
Erscheinungsjahr
2019
Serientitel
Center for Mathematical Economics Working Papers
Band
614
Seite(n)
22
ISSN
0931-6558
Page URI
https://pub.uni-bielefeld.de/record/2935374

Zitieren

Federico S, Ferrari G, Riedel F, Röckner M. On a Class of Infinite-Dimensional Singular Stochastic Control Problems. Center for Mathematical Economics Working Papers. Vol 614. Bielefeld: Center for Mathematical Economics; 2019.
Federico, S., Ferrari, G., Riedel, F., & Röckner, M. (2019). On a Class of Infinite-Dimensional Singular Stochastic Control Problems (Center for Mathematical Economics Working Papers, 614). Bielefeld: Center for Mathematical Economics.
Federico, Salvatore, Ferrari, Giorgio, Riedel, Frank, and Röckner, Michael. 2019. On a Class of Infinite-Dimensional Singular Stochastic Control Problems. Vol. 614. Center for Mathematical Economics Working Papers. Bielefeld: Center for Mathematical Economics.
Federico, S., Ferrari, G., Riedel, F., and Röckner, M. (2019). On a Class of Infinite-Dimensional Singular Stochastic Control Problems. Center for Mathematical Economics Working Papers, 614, Bielefeld: Center for Mathematical Economics.
Federico, S., et al., 2019. On a Class of Infinite-Dimensional Singular Stochastic Control Problems, Center for Mathematical Economics Working Papers, no.614, Bielefeld: Center for Mathematical Economics.
S. Federico, et al., On a Class of Infinite-Dimensional Singular Stochastic Control Problems, Center for Mathematical Economics Working Papers, vol. 614, Bielefeld: Center for Mathematical Economics, 2019.
Federico, S., Ferrari, G., Riedel, F., Röckner, M.: On a Class of Infinite-Dimensional Singular Stochastic Control Problems. Center for Mathematical Economics Working Papers, 614. Center for Mathematical Economics, Bielefeld (2019).
Federico, Salvatore, Ferrari, Giorgio, Riedel, Frank, and Röckner, Michael. On a Class of Infinite-Dimensional Singular Stochastic Control Problems. Bielefeld: Center for Mathematical Economics, 2019. Center for Mathematical Economics Working Papers. 614.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-04-26T09:44:56Z
MD5 Prüfsumme
275a97b52376576901fdf6811d0d6680


Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar