Magnetic tracking of protein synthesis in microfluidic environments - challenges and perspectives

Wegener M, Ennen I, Walhorn V, Anselmetti D, Hütten A, Dietz K-J (2019)
Nanomaterials 9(4): 585.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 1.59 MB
Abstract / Bemerkung
A novel technique to study protein synthesis is proposed that uses magnetic nanoparticles in combination with microfluidic devices to achieve new insights into translational regulation. Cellular protein synthesis is an energy-demanding process which is tightly controlled and is dependent on environmental and developmental requirements. Processivity and regulation of protein synthesis as part of the posttranslational nano-machinery has now moved back into the focus of cell biology, since it became apparent that multiple mechanisms are in place for fine-tuning of translation and conditional selection of transcripts. Recent methodological developments, such as ribosome foot printing, propel current research. Here we propose a strategy to open up a new field of labelling, separation, and analysis of specific polysomes using superparamagnetic particles following pharmacological arrest of translation during cell lysis and subsequent analysis. Translation occurs in polysomes, which are assemblies of specific transcripts, associated ribosomes, nascent polypeptides, and other factors. This supramolecular structure allows for unique approaches to selection of polysomes by targeting the specific transcript, ribosomes, or nascent polypeptides. Once labeled with functionalized superparamagnetic particles, such assemblies can be separated in microfluidic devices or magnetic ratchets and quantified. Insights into the dynamics of translation is obtained through quantifying large numbers of ribosomes along different locations of the polysome. Thus, an entire new concept for in vitro, ex vivo, and eventually single cell analysis will be realized and will allow for magnetic tracking of protein synthesis.
Stichworte
Arabidopsis thaliana; magnetic field; nanobead; polysome; protein synthesis; ribosome; superparamagnetic particle; translation
Erscheinungsjahr
2019
Zeitschriftentitel
Nanomaterials
Band
9
Ausgabe
4
Art.-Nr.
585
ISSN
1936-2625
eISSN
2079-4991
Page URI
https://pub.uni-bielefeld.de/record/2934872

Zitieren

Wegener M, Ennen I, Walhorn V, Anselmetti D, Hütten A, Dietz K-J. Magnetic tracking of protein synthesis in microfluidic environments - challenges and perspectives. Nanomaterials. 2019;9(4): 585.
Wegener, M., Ennen, I., Walhorn, V., Anselmetti, D., Hütten, A., & Dietz, K. - J. (2019). Magnetic tracking of protein synthesis in microfluidic environments - challenges and perspectives. Nanomaterials, 9(4), 585. doi:10.3390/nano9040585
Wegener, M., Ennen, I., Walhorn, V., Anselmetti, D., Hütten, A., and Dietz, K. - J. (2019). Magnetic tracking of protein synthesis in microfluidic environments - challenges and perspectives. Nanomaterials 9:585.
Wegener, M., et al., 2019. Magnetic tracking of protein synthesis in microfluidic environments - challenges and perspectives. Nanomaterials, 9(4): 585.
M. Wegener, et al., “Magnetic tracking of protein synthesis in microfluidic environments - challenges and perspectives”, Nanomaterials, vol. 9, 2019, : 585.
Wegener, M., Ennen, I., Walhorn, V., Anselmetti, D., Hütten, A., Dietz, K.-J.: Magnetic tracking of protein synthesis in microfluidic environments - challenges and perspectives. Nanomaterials. 9, : 585 (2019).
Wegener, Melanie, Ennen, Inga, Walhorn, Volker, Anselmetti, Dario, Hütten, Andreas, and Dietz, Karl-Josef. “Magnetic tracking of protein synthesis in microfluidic environments - challenges and perspectives”. Nanomaterials 9.4 (2019): 585.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:19:06Z
MD5 Prüfsumme
61614f2e3745e2097bcd5f59841748a6

40 References

Daten bereitgestellt von Europe PubMed Central.

Fast and sensitive detection of an anthrax biomarker using SERS-based solenoid microfluidic sensor.
Gao R, Ko J, Cha K, Jeon JH, Rhie GE, Choi J, deMello AJ, Choo J., Biosens Bioelectron 72(), 2015
PMID: 25985198
The 80S rat liver ribosome at 25 A resolution by electron cryomicroscopy and angular reconstitution.
Dube P, Wieske M, Stark H, Schatz M, Stahl J, Zemlin F, Lutsch G, van Heel M., Structure 6(3), 1998
PMID: 9551559
Mechanism of cytoplasmic mRNA translation.
Browning KS, Bailey-Serres J., Arabidopsis Book 13(), 2015
PMID: 26019692
Redox Regulation of Cytosolic Translation in Plants.
Moore M, Gossmann N, Dietz KJ., Trends Plant Sci. 21(5), 2015
PMID: 26706442
Isolation of Plant Polysomal mRNA by Differential Centrifugation and Ribosome Immunopurification Methods
Mustroph A., Juntawong P., Bailey-Serres J.., 2009
A hierarchy of ATP-consuming processes in mammalian cells.
Buttgereit F, Brand MD., Biochem. J. 312 ( Pt 1)(), 1995
PMID: 7492307
Protein Degradation Rate in Arabidopsis thaliana Leaf Growth and Development.
Li L, Nelson CJ, Trosch J, Castleden I, Huang S, Millar AH., Plant Cell 29(2), 2017
PMID: 28138016
Global signatures of protein and mRNA expression levels.
de Sousa Abreu R, Penalva LO, Marcotte EM, Vogel C., Mol Biosyst 5(12), 2009
PMID: 20023718
Translational Control in Cancer.
Robichaud N, Sonenberg N, Ruggero D, Schneider RJ., Cold Spring Harb Perspect Biol 11(7), 2019
PMID: 29959193
The Growing Toolbox for Protein Synthesis Studies.
Iwasaki S, Ingolia NT., Trends Biochem. Sci. 42(8), 2017
PMID: 28566214
Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling.
Ingolia NT, Ghaemmaghami S, Newman JR, Weissman JS., Science 324(5924), 2009
PMID: 19213877
Genome-wide assessment of differential translations with ribosome profiling data.
Xiao Z, Zou Q, Liu Y, Yang X., Nat Commun 7(), 2016
PMID: 27041671
Selective identification of newly synthesized proteins in mammalian cells using bioorthogonal noncanonical amino acid tagging (BONCAT).
Dieterich DC, Link AJ, Graumann J, Tirrell DA, Schuman EM., Proc. Natl. Acad. Sci. U.S.A. 103(25), 2006
PMID: 16769897
In situ visualization and dynamics of newly synthesized proteins in rat hippocampal neurons.
Dieterich DC, Hodas JJ, Gouzer G, Shadrin IY, Ngo JT, Triller A, Tirrell DA, Schuman EM., Nat. Neurosci. 13(7), 2010
PMID: 20543841
QuaNCAT: quantitating proteome dynamics in primary cells.
Howden AJ, Geoghegan V, Katsch K, Efstathiou G, Bhushan B, Boutureira O, Thomas B, Trudgian DC, Kessler BM, Dieterich DC, Davis BG, Acuto O., Nat. Methods 10(4), 2013
PMID: 23474466
Global analysis of cellular protein translation by pulsed SILAC.
Schwanhausser B, Gossen M, Dittmar G, Selbach M., Proteomics 9(1), 2009
PMID: 19053139
SUnSET, a nonradioactive method to monitor protein synthesis.
Schmidt EK, Clavarino G, Ceppi M, Pierre P., Nat. Methods 6(4), 2009
PMID: 19305406
Translation. An RNA biosensor for imaging the first round of translation from single cells to living animals.
Halstead JM, Lionnet T, Wilbertz JH, Wippich F, Ephrussi A, Singer RH, Chao JA., Science 347(6228), 2015
PMID: 25792328
Mapping translation 'hot-spots' in live cells by tracking single molecules of mRNA and ribosomes.
Katz ZB, English BP, Lionnet T, Yoon YJ, Monnier N, Ovryn B, Bathe M, Singer RH., Elife 5(), 2016
PMID: 26760529
Real-Time Imaging of Translation on Single mRNA Transcripts in Live Cells.
Wang C, Han B, Zhou R, Zhuang X., Cell 165(4), 2016
PMID: 27153499
Dynamics of Translation of Single mRNA Molecules In Vivo.
Yan X, Hoek TA, Vale RD, Tanenbaum ME., Cell 165(4), 2016
PMID: 27153498
Real-time quantification of single RNA translation dynamics in living cells.
Morisaki T, Lyon K, DeLuca KF, DeLuca JG, English BP, Zhang Z, Lavis LD, Grimm JB, Viswanathan S, Looger LL, Lionnet T, Stasevich TJ., Science 352(6292), 2016
PMID: 27313040
Translation dynamics of single mRNAs in live cells and neurons.
Wu B, Eliscovich C, Yoon YJ, Singer RH., Science 352(6292), 2016
PMID: 27313041
Synthesis of magnetic nanoparticles and their application to bioassays.
Osaka T, Matsunaga T, Nakanishi T, Arakaki A, Niwa D, Iida H., Anal Bioanal Chem 384(3), 2006
PMID: 16402174
An Efficient Method for Plant Vacuole Isolation using Digitonin for Plasmalemma Lysis
Le-Quoc K., Le-Quoc D., Pugin A.., 1987
A hydrodynamic switch: Microfluidic separation system for magnetic beads
Weddemann A., Wittbracht F., Auge A., Hütten A.., 2009
Magnetic ratchet for biotechnological applications
Auge A., Weddemann A., Wittbracht F., Hütten A.., 2009
Ultra-Small Superparamagnetic Iron Oxide Nanoparticles Made to Order
Benyettou F., Milosevic I., Olsen J., Motte J., Trabolsi A.., 2012
Heusler nanoparticles for spintronics and ferromagnetic shape memory alloys
Wang C., Meyer J., Teichert N., Auge A., Rausch E., Balke B., Hütten A., Fecher G.H., Felser C.., 2014

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 30970646
PubMed | Europe PMC

Suchen in

Google Scholar