The role of the plant antioxidant system in drought tolerance

Laxa M, Liebthal M, Telman W, Chibani K, Dietz K-J (2019)
Antioxidants 8(4): 94.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
OA 1.01 MB
Abstract / Bemerkung
Water deficiency compromises plant performance and yield in many habitats and in agriculture. In addition to survival of the acute drought stress period which depends on plant-genotype-specific characteristics, stress intensity and duration, also the speed and efficiency of recovery determine plant performance. Drought-induced deregulation of metabolism enhances generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) which in turn affect the redox regulatory state of the cell. Strong correlative and analytical evidence assigns a major role in drought tolerance to the redox regulatory and antioxidant system. This review compiles current knowledge on the response and function of superoxide, hydrogen peroxide and nitric oxide under drought stress in various species and drought stress regimes. The meta-analysis of reported changes in transcript and protein amounts, and activities of components of the antioxidant and redox network support the tentative conclusion that drought tolerance is more tightly linked to up-regulated ascorbate-dependent antioxidant activity than to the response of the thiol-redox regulatory network. The significance of the antioxidant system in surviving severe phases of dehydration is further supported by the strong antioxidant system usually encountered in resurrection plants.
antioxidant; drought; ROS; RNS; stress; acclimation
Open-Access-Publikationskosten wurden durch die Deutsche Forschungsgemeinschaft und die Universität Bielefeld gefördert.
Page URI


Laxa M, Liebthal M, Telman W, Chibani K, Dietz K-J. The role of the plant antioxidant system in drought tolerance. Antioxidants. 2019;8(4): 94.
Laxa, M., Liebthal, M., Telman, W., Chibani, K., & Dietz, K. - J. (2019). The role of the plant antioxidant system in drought tolerance. Antioxidants, 8(4), 94. doi:10.3390/antiox8040094
Laxa, Miriam, Liebthal, Michael, Telman, Wilena, Chibani, Kamel, and Dietz, Karl-Josef. 2019. “The role of the plant antioxidant system in drought tolerance”. Antioxidants 8 (4): 94.
Laxa, M., Liebthal, M., Telman, W., Chibani, K., and Dietz, K. - J. (2019). The role of the plant antioxidant system in drought tolerance. Antioxidants 8:94.
Laxa, M., et al., 2019. The role of the plant antioxidant system in drought tolerance. Antioxidants, 8(4): 94.
M. Laxa, et al., “The role of the plant antioxidant system in drought tolerance”, Antioxidants, vol. 8, 2019, : 94.
Laxa, M., Liebthal, M., Telman, W., Chibani, K., Dietz, K.-J.: The role of the plant antioxidant system in drought tolerance. Antioxidants. 8, : 94 (2019).
Laxa, Miriam, Liebthal, Michael, Telman, Wilena, Chibani, Kamel, and Dietz, Karl-Josef. “The role of the plant antioxidant system in drought tolerance”. Antioxidants 8.4 (2019): 94.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Access Level
OA Open Access
Zuletzt Hochgeladen
MD5 Prüfsumme

1 Zitation in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

The foliar application of a mixture of semisynthetic chitosan derivatives induces tolerance to water deficit in maize, improving the antioxidant system and increasing photosynthesis and grain yield.
Rabêlo VM, Magalhães PC, Bressanin LA, Carvalho DT, Reis COD, Karam D, Doriguetto AC, Santos MHD, Santos Filho PRDS, Souza TC., Sci Rep 9(1), 2019
PMID: 31160657

190 References

Daten bereitgestellt von Europe PubMed Central.

Abiotic and biotic stress combinations.
Suzuki N, Rivero RM, Shulaev V, Blumwald E, Mittler R., New Phytol. 203(1), 2014
PMID: 24720847
Nitric oxide (NO) and phytohormones crosstalk during early plant development.
Sanz L, Albertos P, Mateos I, Sanchez-Vicente I, Lechon T, Fernandez-Marcos M, Lorenzo O., J. Exp. Bot. 66(10), 2015
PMID: 25954048
Reactive oxygen species in plant development.
Mhamdi A, Van Breusegem F., Development 145(15), 2018
PMID: 30093413
Role of nitric oxide synthase in the light-induced development of sporangiophores in Phycomyces blakesleeanus.
Maier J, Hecker R, Rockel P, Ninnemann H., Plant Physiol. 126(3), 2001
PMID: 11457983
Reactive oxygen species metabolism and plant-fungal interactions.
Segal LM, Wilson RA., Fungal Genet. Biol. 110(), 2017
PMID: 29225185
Stomatal responses to drought stress
Pirasteh-Anosheh H., Saed-Moucheshi A., Pakniyat H., Pessarakli M.., 2016
Changes in root and shoot growth and biomass partition resulting from different irrigation intervals for Ligustrum japonicum Thunb
Silva D.D., Kane M.E., Beeson R.C.., 2012
Global reprogramming of transcription and metabolism in Medicago truncatula during progressive drought and after rewatering.
Zhang JY, Cruz DE Carvalho MH, Torres-Jerez I, Kang Y, Allen SN, Huhman DV, Tang Y, Murray J, Sumner LW, Udvardi MK., Plant Cell Environ. 37(11), 2014
PMID: 24661137
Effect of water stress on nodule physiology and biochemistry of a drought tolerant cultivar of Common Bean (Phaseolus vulgaris L.)
Ramos M.L.G., Gordon A.J., Minchin F.R., Sprent J.I., Parson R.., 1999
Methodology of Drought Stress Research: Experimental Setup and Physiological Characterization.
Osmolovskaya N, Shumilina J, Kim A, Didio A, Grishina T, Bilova T, Keltsieva OA, Zhukov V, Tikhonovich I, Tarakhovskaya E, Frolov A, Wessjohann LA., Int J Mol Sci 19(12), 2018
PMID: 30563000
Growth of Arabidopsis thaliana seedlings under water deficit studied by control of water potential in nutrient-agar media.
van der Weele CM, Spollen WG, Sharp RE, Baskin TI., J. Exp. Bot. 51(350), 2000
PMID: 11006306
Early responses of mature Arabidopsis thaliana plants to reduced water potential in the agar-based polyethylene glycol infusion drought model.
Frolov A, Bilova T, Paudel G, Berger R, Balcke GU, Birkemeyer C, Wessjohann LA., J. Plant Physiol. 208(), 2016
PMID: 27889524
Identification of drought-responsive miRNAs and physiological characterization of tea plant (Camellia sinensis L.) under drought stress.
Guo Y, Zhao S, Zhu C, Chang X, Yue C, Wang Z, Lin Y, Lai Z., BMC Plant Biol. 17(1), 2017
PMID: 29157225
Leaf responses to mild drought stress in natural variants of Arabidopsis.
Clauw P, Coppens F, De Beuf K, Dhondt S, Van Daele T, Maleux K, Storme V, Clement L, Gonzalez N, Inze D., Plant Physiol. 167(3), 2015
PMID: 25604532
Biological nitrogen fixation of Biserrula pelecinus L. under water deficit
Vicente C.S.L., Pérez-Fernández M.A., Pereira G., Tavares-de-Sousa M.M.., 2012
Regulated deficit irrigation promoting growth and increasing fruit yield of jujube trees
Qiang M., Fei L., Liu Y.., 2015
Effect of water supply on growth and polyphenols of lemon balm (Melissa officinalis L.) and thyme (Thymus vulgaris L.).
Nemeth-Zambori E, Pluhar Z, Szabo K, Malekzadeh M, Radacsi P, Inotai K, Komaromi B, Seidler-Lozykowska K., Acta. Biol. Hung. 67(1), 2016
PMID: 26960357
Effects of Exogenous Dopamine on the Uptake, Transport, and Resorption of Apple Ionome Under Moderate Drought.
Liang B, Gao T, Zhao Q, Ma C, Chen Q, Wei Z, Li C, Li C, Ma F., Front Plant Sci 9(), 2018
PMID: 29922323
PdEPF1 regulates water-use efficiency and drought tolerance by modulating stomatal density in poplar.
Wang C, Liu S, Dong Y, Zhao Y, Geng A, Xia X, Yin W., Plant Biotechnol. J. 14(3), 2015
PMID: 26228739
Effects of water stress on respiration in soybean leaves.
Ribas-Carbo M, Taylor NL, Giles L, Busquets S, Finnegan PM, Day DA, Lambers H, Medrano H, Berry JA, Flexas J., Plant Physiol. 139(1), 2005
PMID: 16126857
Study of the ionome and uptake fluxes in cherry tomato plants under moderate water stress conditions
Sánchez-Rodríguez E., Rubio-Wilhelmi M.D., Cervilla L.M., Blasco B., Rios J.J., Leyva R., Romero L., Ruiz J.M.., 2010
Effect of water stress on some quantitative and qualitative traits of Valerian (Valeriana officinalis L.) plants
Mustafavi S.H., Shekari F., Hatami-Maleki H., Nasiri Y.., 2016
Improved tolerance to drought stress after anthesis due to priming before anthesis in wheat (Triticum aestivum L.) var. Vinjett.
Wang X, Vignjevic M, Jiang D, Jacobsen S, Wollenweber B., J. Exp. Bot. 65(22), 2014
PMID: 25205581
Genotypically Identifying Wheat Mesophyll Conductance Regulation under Progressive Drought Stress.
Olsovska K, Kovar M, Brestic M, Zivcak M, Slamka P, Shao HB., Front Plant Sci 7(), 2016
PMID: 27551283
Moderate Drought Stress Affected Root Growth and Grain Yield in Old, Modern and Newly Released Cultivars of Winter Wheat.
Fang Y, Du Y, Wang J, Wu A, Qiao S, Xu B, Zhang S, Siddique KHM, Chen Y., Front Plant Sci 8(), 2017
PMID: 28507555
The nature of the progression of drought stress drives differential metabolomic responses in Populus deltoides.
Tschaplinski TJ, Abraham PE, Jawdy SS, Gunter LE, Martin MZ, Engle NL, Yang X, Tuskan GA., Ann. Bot. (), 2019
PMID: 30689716
Differential sensitivity of C3 and C4 plants to water deficit stress: Association with oxidative stress and antioxidants
Nayyar H., Gupta D.., 2006
ABA Receptor Subfamily III Enhances Abscisic Acid Sensitivity and Improves the Drought Tolerance of Arabidopsis.
Li X, Li G, Li Y, Kong X, Zhang L, Wang J, Li X, Yang Y., Int J Mol Sci 19(7), 2018
PMID: 30004422
Alternation of flavonoid accumulation under drought stress in Arabidopsis thaliana.
Nakabayashi R, Mori T, Saito K., Plant Signal Behav 9(8), 2014
PMID: 25763629
The Expression of CARK1 or RCAR11 Driven by Synthetic Promoters Increases Drought Tolerance in Arabidopsis thaliana.
Ge H, Li X, Chen S, Zhang M, Liu Z, Wang J, Li X, Yang Y., Int J Mol Sci 19(7), 2018
PMID: 29970817
A maize phytochrome-interacting factors protein ZmPIF1 enhances drought tolerance by inducing stomatal closure and improves grain yield in Oryza sativa.
Gao Y, Wu M, Zhang M, Jiang W, Ren X, Liang E, Zhang D, Zhang C, Xiao N, Li Y, Dai Y, Chen J., Plant Biotechnol. J. 16(7), 2018
PMID: 29327440
Overexpression of EaDREB2 and pyramiding of EaDREB2 with the pea DNA helicase gene (PDH45) enhance drought and salinity tolerance in sugarcane (Saccharum spp. hybrid).
Augustine SM, Ashwin Narayan J, Syamaladevi DP, Appunu C, Chakravarthi M, Ravichandran V, Tuteja N, Subramonian N., Plant Cell Rep. 34(2), 2014
PMID: 25477204
Overexpression of ERF1-V from Haynaldia villosa Can Enhance the Resistance of Wheat to Powdery Mildew and Increase the Tolerance to Salt and Drought Stresses.
Xing L, Di Z, Yang W, Liu J, Li M, Wang X, Cui C, Wang X, Wang X, Zhang R, Xiao J, Cao A., Front Plant Sci 8(), 2017
PMID: 29238352
ROS and RNS in plant physiology: an overview.
Del Rio LA., J. Exp. Bot. 66(10), 2015
PMID: 25873662
Reactive oxygen species signaling in plants under abiotic stress.
Choudhury S, Panda P, Sahoo L, Panda SK., Plant Signal Behav 8(4), 2013
PMID: 23425848
Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: insights from ROS detoxification and scavenging.
Hossain MA, Bhattacharjee S, Armin SM, Qian P, Xin W, Li HY, Burritt DJ, Fujita M, Tran LS., Front Plant Sci 6(), 2015
PMID: 26136756
Retrograde signaling: Organelles go networking.
Kleine T, Leister D., Biochim. Biophys. Acta 1857(8), 2016
PMID: 26997501
Drought and oxidative load in the leaves of C3 plants: a predominant role for photorespiration?
Noctor G, Veljovic-Jovanovic S, Driscoll S, Novitskaya L, Foyer CH., Ann. Bot. 89 Spec No(), 2002
PMID: 12102510
Alternative oxidase in durum wheat mitochondria. Activation by pyruvate, hydroxypyruvate and glyoxylate and physiological role.
Pastore D, Trono D, Laus MN, Di Fonzo N, Passarella S., Plant Cell Physiol. 42(12), 2001
PMID: 11773530
Up-regulation of the mitochondrial alternative oxidase pathway enhances photosynthetic electron transport under drought conditions.
Bartoli CG, Gomez F, Gergoff G, Guiamet JJ, Puntarulo S., J. Exp. Bot. 56(415), 2005
PMID: 15781442
Alternative Oxidase Is Positive for Plant Performance.
Selinski J, Scheibe R, Day DA, Whelan J., Trends Plant Sci. 23(7), 2018
PMID: 29665989
Drought stress and reactive oxygen species: Production, scavenging and signaling.
Cruz de Carvalho MH., Plant Signal Behav 3(3), 2008
PMID: 19513210
The crucial role of plant mitochondria in orchestrating drought tolerance.
Atkin OK, Macherel D., Ann. Bot. 103(4), 2008
PMID: 18552366
A tidal wave of signals: calcium and ROS at the forefront of rapid systemic signaling.
Gilroy S, Suzuki N, Miller G, Choi WG, Toyota M, Devireddy AR, Mittler R., Trends Plant Sci. 19(10), 2014
PMID: 25088679
Reactive Oxygen Species in the Regulation of Stomatal Movements.
Sierla M, Waszczak C, Vahisalu T, Kangasjarvi J., Plant Physiol. 171(3), 2016
PMID: 27208297
Response of plants to water stress.
Osakabe Y, Osakabe K, Shinozaki K, Tran LS., Front Plant Sci 5(), 2014
PMID: 24659993
Drought Induces Distinct Growth Response, Protection, and Recovery Mechanisms in the Maize Leaf Growth Zone.
Avramova V, AbdElgawad H, Zhang Z, Fotschki B, Casadevall R, Vergauwen L, Knapen D, Taleisnik E, Guisez Y, Asard H, Beemster GT., Plant Physiol. 169(2), 2015
PMID: 26297138
Overexpression of Rat Neurons Nitric Oxide Synthase in Rice Enhances Drought and Salt Tolerance.
Cai W, Liu W, Wang WS, Fu ZW, Han TT, Lu YT., PLoS ONE 10(6), 2015
PMID: 26121399
Effects of various chemical agents for alleviation of drought stress in rice plants (Oryza sativa L.)
Shehab G.G., Ahmed O.K., El-Beltagi H.S.., 2010
Proline and reactive oxygen/nitrogen species metabolism is involved in the tolerant response of the invasive plant species Ailanthus altissima to drought and salinity
Filippou P., Bouchagier P., Skotti E., Fotopoulos V.., 2014
Hydrogen peroxide produced by NADPH oxidases increases proline accumulation during salt or mannitol stress in Arabidopsis thaliana.
Ben Rejeb K, Lefebvre-De Vos D, Le Disquet I, Leprince AS, Bordenave M, Maldiney R, Jdey A, Abdelly C, Savoure A., New Phytol. 208(4), 2015
PMID: 26180024
Nitric oxide pretreatment enhances antioxidant defense and glyoxalase systems to confer PEG-induced oxidative stress in rapeseed
Hasanuzzaman M., Nahar K., Hossain M.S., Anee T.I., Parvin K., Fujita M.., 2017
Antioxidative changes in Citrus reticulata L. induced by drought stress and its effect on root colonization by arbuscular mycorrhizal fungi
Sarkar J., Ray A., Chakraborty B., Chakraborty U.., 2016
Nitric oxide mitigates the effect of water deficit in Crambe abyssinica.
Batista PF, Costa AC, Muller C, Silva-Filho RO, Barbosa da Silva F, Merchant A, Mendes GC, Nascimento KJT., Plant Physiol. Biochem. 129(), 2018
PMID: 29925047
Influence of silicon on sunflower cultivars under drought stress, I: Growth, antioxidant mechanisms, and lipid peroxidation
Gunes A., Pilbeam D.J., Inal A., Coban S.., 2008
Antioxidative and physiological responses of two sunflower (Helianthus annuus) cultivars under PEG-mediated drought stress
Baloğlu M.C., Kavas M., AYDIN G., ÖKTEM H.A., Yücel A.M.., 2012
Melatonin systemically ameliorates drought stress-induced damage in Medicago sativa plants by modulating nitro-oxidative homeostasis and proline metabolism.
Antoniou C, Chatzimichail G, Xenofontos R, Pavlou JJ, Panagiotou E, Christou A, Fotopoulos V., J. Pineal Res. 62(4), 2017
PMID: 28226194
Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings
Sharma P., Dubey R.S.., 2005
Energy dissipation and antioxidant enzyme system protect photosystem II of sweet sorghum under drought stress
Guo Y.Y., Tian S.S., Liu S.S., Wang W.Q., Sui N.., 2018
The effect of polyethylene glycol-induced drought stress on photosynthesis, carbohydrates and cell membrane in Stevia rebaudiana grown in greenhouse
Hajihashemi S., Sofo A.., 2018
Silicon alleviates oxidative damage of wheat plants in pots under drought.
Gong H, Zhu X, Chen K, Wang S, Zhang C., Plant Sci. 169(2), 2005
PMID: IND43739443
Nitric oxide treatment alleviates drought stress in wheat seedlings
Tian X., Lei Y.., 2006
Effects of silicon on defense of wheat against oxidative stress under drought at different developmental stages
Gong H.J., Chen K.M., Zhao Z.G., Chen G.C., Zhou W.J.., 2008
Lipid peroxidation in sorghum and sunflower seedlings as affected by ascorbic acid, benzoic acid, and propyl gallate
Zhang J., Kirkham M.B.., 1996
Nitric oxide mediates the hormonal control of Crassulacean acid metabolism expression in young pineapple plants.
Freschi L, Rodrigues MA, Domingues DS, Purgatto E, Van Sluys MA, Magalhaes JR, Kaiser WM, Mercier H., Plant Physiol. 152(4), 2010
PMID: 20147491
Nitrosative responses in citrus plants exposed to six abiotic stress conditions.
Ziogas V, Tanou G, Filippou P, Diamantidis G, Vasilakakis M, Fotopoulos V, Molassiotis A., Plant Physiol. Biochem. 68(), 2013
PMID: 23685754
Interaction between polyamine and nitric oxide signaling in adaptive responses to drought in cucumber
Arasimowicz-Jelonek M., Floryszak-Wieczorek J., Kubiś J.., 2009
Reduced nitric oxide levels during drought stress promote drought tolerance in barley and is associated with elevated polyamine biosynthesis.
Montilla-Bascon G, Rubiales D, Hebelstrup KH, Mandon J, Harren FJM, Cristescu SM, Mur LAJ, Prats E., Sci Rep 7(1), 2017
PMID: 29042616
Water stress induces a differential and spatially distributed nitro-oxidative stress response in roots and leaves of Lotus japonicus
Signorelli S, Francisco J. Corpas , Jorge Monza , Juan B. Barroso , Omar Borsani ., Plant Sci. 201-(), 2013
PMID: IND500605142
Evidence towards the involvement of nitric oxide in drought tolerance of sugarcane.
Silveira NM, Hancock JT, Frungillo L, Siasou E, Marcos FCC, Salgado I, Machado EC, Ribeiro RV., Plant Physiol. Biochem. 115(), 2017
PMID: 28419961
Protein oxidation and peroxidation.
Davies MJ., Biochem. J. 473(7), 2016
PMID: 27026395
Peroxiredoxins in plants and cyanobacteria.
Dietz KJ., Antioxid. Redox Signal. 15(4), 2011
PMID: 21194355
Peroxiredoxins and Redox Signaling in Plants.
Liebthal M, Maynard D, Dietz KJ., Antioxid. Redox Signal. 28(7), 2017
PMID: 28594234
Oxidative post-translational modifications of cysteine residues in plant signal transduction.
Waszczak C, Akter S, Jacques S, Huang J, Messens J, Van Breusegem F., J. Exp. Bot. 66(10), 2015
PMID: 25750423
Occurrence, structure, and evolution of nitric oxide synthase-like proteins in the plant kingdom.
Jeandroz S, Wipf D, Stuehr DJ, Lamattina L, Melkonian M, Tian Z, Zhu Y, Carpenter EJ, Wong GK, Wendehenne D., Sci Signal 9(417), 2016
PMID: 26933064
Metabolism of reactive nitrogen species in pea plants under abiotic stress conditions.
Corpas FJ, Chaki M, Fernandez-Ocana A, Valderrama R, Palma JM, Carreras A, Begara-Morales JC, Airaki M, del Rio LA, Barroso JB., Plant Cell Physiol. 49(11), 2008
PMID: 18801763
Evidence supporting the existence of L-arginine-dependent nitric oxide synthase activity in plants.
Corpas FJ, Palma JM, del Rio LA, Barroso JB., New Phytol. 184(1), 2009
PMID: 19659743
On the origins of nitric oxide.
Gupta KJ, Fernie AR, Kaiser WM, van Dongen JT., Trends Plant Sci. 16(3), 2010
PMID: 21185769
Anoxic nitric oxide cycling in plants: participating reactions and possible mechanisms
Igamberdiev AU, Bykova NV, Shah JK, Hill RD., Physiol Plant 138(4), 2010
PMID: IND44341609
Nitrate Reductase Regulates Plant Nitric Oxide Homeostasis.
Chamizo-Ampudia A, Sanz-Luque E, Llamas A, Galvan A, Fernandez E., Trends Plant Sci. 22(2), 2017
PMID: 28065651
Effect of mannitol and glucose-induced osmotic stress on growth, water relations, and solute composition of cell suspension cultures of poplar (Populus deltoides var. Occidentalis) in relation to anthocyanin accumulation
Tholakalabavi A., Zwiazek J.J., Thorpe T.A.., 1994
Leaf Age-Dependent Photoprotective and Antioxidative Response Mechanisms to Paraquat-Induced Oxidative Stress in Arabidopsis thaliana.
Moustaka J, Tanou G, Adamakis ID, Eleftheriou EP, Moustakas M., Int J Mol Sci 16(6), 2015
PMID: 26096005
Developmental and seasonal changes of stress responsiveness in beech leaves (Fagus sylvatica L.)
Polle A., Schwanz P., Rudolf C.., 2001
Transcriptome sequencing dissection of the mechanisms underlying differential cold sensitivity in young and mature leaves of the tea plant (Camellia sinensis).
Li NN, Yue C, Cao HL, Qian WJ, Hao XY, Wang YC, Wang L, Ding CQ, Wang XC, Yang YJ., J. Plant Physiol. 224-225(), 2018
PMID: 29642051
Water stress induced by polyethylene glycol 6000 and sodium chloride in two maize cultivars.
Mohammadkhani N, Heidari R., Pak. J. Biol. Sci. 11(1), 2008
PMID: 18819599
Measurement of NO in biological samples.
Csonka C, Pali T, Bencsik P, Gorbe A, Ferdinandy P, Csont T., Br. J. Pharmacol. 172(6), 2014
PMID: 24990201
Effects of drought and salt stress on seed germination of three leguminous species
Wu C., Wang Q., Xie B., Wang Z., Cui J., Hu T.., 2011
Antioxidant Systems are Regulated by Nitric Oxide-Mediated Post-translational Modifications (NO-PTMs).
Begara-Morales JC, Sanchez-Calvo B, Chaki M, Valderrama R, Mata-Perez C, Padilla MN, Corpas FJ, Barroso JB., Front Plant Sci 7(), 2016
PMID: 26909095
Protein Tyrosine Nitration during Development and Abiotic Stress Response in Plants.
Mata-Perez C, Begara-Morales JC, Chaki M, Sanchez-Calvo B, Valderrama R, Padilla MN, Corpas FJ, Barroso JB., Front Plant Sci 7(), 2016
PMID: 27895655
Reactive oxygen species, antioxidant enzyme activities and gene expression patterns in leaves and roots of Kentucky bluegrass in response to drought stress and recovery
Bian S., Jiang Y.., 2009
Is there a GAS (general adaptation syndrome) response to various types of environmental stress?
Leshem Y.Y., Kuiper P.J.C.., 1996
Nitric oxide plays a central role in determining lateral root development in tomato.
Correa-Aragunde N, Graziano M, Lamattina L., Planta 218(6), 2004
PMID: 14716561
Generation of nitric oxide in roots of Pisum sativum, Triticum aestivum and Petroselinum crispum plants under osmotic and drought stress
Kolbert Z., Bartha B., Erdei L.., 2005
Oxidative and nitrosative signaling in plants: two branches in the same tree?
Molassiotis A, Fotopoulos V., Plant Signal Behav 6(2), 2011
PMID: 21325889
Plant adaptations to the combination of drought and high temperatures
Zandalinas SI, Ron Mittler , DamiA¡n BalfagA³n , Vicent Arbona , Aurelio GA³meza€Cadenas ., Physiol Plant 162(1), 2018
PMID: IND605872174
ABA is required for the accumulation of APX1 and MBF1c during a combination of water deficit and heat stress.
Zandalinas SI, Balfagon D, Arbona V, Gomez-Cadenas A, Inupakutika MA, Mittler R., J. Exp. Bot. 67(18), 2016
PMID: 27497287
The Difference of Physiological and Proteomic Changes in Maize Leaves Adaptation to Drought, Heat, and Combined Both Stresses.
Zhao F, Zhang D, Zhao Y, Wang W, Yang H, Tai F, Li C, Hu X., Front Plant Sci 7(), 2016
PMID: 27833614
Reactive oxygen species scavenging capacities of cotton (Gossypium hirsutum) cultivars under combined drought and heat induced oxidative stress
Sekmen A.H., Ozgur R., Uzilday B., Turkan I.., 2014
Differential physiological response of the grapevine varieties Touriga Nacional and Trincadeira to combined heat, drought and light stresses.
Carvalho LC, Coito JL, Goncalves EF, Chaves MM, Amancio S., Plant Biol (Stuttg) 18 Suppl 1(), 2015
PMID: 26518605
Impact of climate change on crop nutrient and water use efficiencies
Brouder SM, Volenec JJ., Physiol Plant 133(4), 2008
PMID: IND44076456
The absence of ALTERNATIVE OXIDASE1a in Arabidopsis results in acute sensitivity to combined light and drought stress.
Giraud E, Ho LH, Clifton R, Carroll A, Estavillo G, Tan YF, Howell KA, Ivanova A, Pogson BJ, Millar AH, Whelan J., Plant Physiol. 147(2), 2008
PMID: 18424626
Reactive oxygen species, abiotic stress and stress combination.
Choudhury FK, Rivero RM, Blumwald E, Mittler R., Plant J. 90(5), 2016
PMID: 27801967
Combined Drought and Heat Activates Protective Responses in Eucalyptus globulus That Are Not Activated When Subjected to Drought or Heat Stress Alone.
Correia B, Hancock RD, Amaral J, Gomez-Cadenas A, Valledor L, Pinto G., Front Plant Sci 9(), 2018
PMID: 29973941
ROS signaling: the new wave?
Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Van Breusegem F., Trends Plant Sci. 16(6), 2011
PMID: 21482172
Stress homeostasis - the redox and auxin perspective.
Tognetti VB, Muhlenbock P, Van Breusegem F., Plant Cell Environ. 35(2), 2011
PMID: 21443606
Oxidative Stress and Inflammation: What Polyphenols Can Do for Us?
Hussain T, Tan B, Yin Y, Blachier F, Tossou MC, Rahu N., Oxid Med Cell Longev 2016(), 2016
PMID: 27738491
Comparative genomic study of the thioredoxin family in photosynthetic organisms with emphasis on Populus trichocarpa.
Chibani K, Wingsle G, Jacquot JP, Gelhaye E, Rouhier N., Mol Plant 2(2), 2009
PMID: 19825616
The chloroplast 2-cysteine peroxiredoxin functions as thioredoxin oxidase in redox regulation of chloroplast metabolism.
Vaseghi MJ, Chibani K, Telman W, Liebthal MF, Gerken M, Schnitzer H, Mueller SM, Dietz KJ., Elife 7(), 2018
PMID: 30311601
The nucleotidase/phosphatase SAL1 is a negative regulator of drought tolerance in Arabidopsis.
Wilson PB, Estavillo GM, Field KJ, Pornsiriwong W, Carroll AJ, Howell KA, Woo NS, Lake JA, Smith SM, Harvey Millar A, von Caemmerer S, Pogson BJ., Plant J. 58(2), 2008
PMID: 19170934
Evidence for a SAL1-PAP chloroplast retrograde pathway that functions in drought and high light signaling in Arabidopsis.
Estavillo GM, Crisp PA, Pornsiriwong W, Wirtz M, Collinge D, Carrie C, Giraud E, Whelan J, David P, Javot H, Brearley C, Hell R, Marin E, Pogson BJ., Plant Cell 23(11), 2011
PMID: 22128124
Overexpression of Populus tomentosa cytosolic ascorbate peroxidase enhances abiotic stress tolerance in tobacco plants
Cao S., Du X.H., Li L.H., Liu Y.D., Zhang L., Pan X., Li Y., Li H., Lu H.., 2017
Drought controls on H2O2 accumulation, catalase (CAT) activity and CAT gene expression in wheat.
Luna CM, Pastori GM, Driscoll S, Groten K, Bernard S, Foyer CH., J. Exp. Bot. 56(411), 2004
PMID: 15569704
Effects of water stress on antioxidant enzymes of leaves and nodules of transgenic alfalfa overexpressing superoxide dismutases.
Rubio MC, Gonzalez EM, Minchin FR, Webb KJ, Arrese-Igor C, Ramos J, Becana M., Physiol Plant 115(4), 2002
PMID: 12121459
Ascorbate peroxidase 1 plays a key role in the response of Arabidopsis thaliana to stress combination.
Koussevitzky S, Suzuki N, Huntington S, Armijo L, Sha W, Cortes D, Shulaev V, Mittler R., J. Biol. Chem. 283(49), 2008
PMID: 18852264
NADPH-dependent thioredoxin reductase A (NTRA) confers elevated tolerance to oxidative stress and drought.
Cha JY, Kim JY, Jung IJ, Kim MR, Melencion A, Alam SS, Yun DJ, Lee SY, Kim MG, Kim WY., Plant Physiol. Biochem. 80(), 2014
PMID: 24792388
Involvement of ascorbate peroxidase and heat shock proteins on citrus tolerance to combined conditions of drought and high temperatures.
Balfagon D, Zandalinas SI, Balino P, Muriach M, Gomez-Cadenas A., Plant Physiol. Biochem. 127(), 2018
PMID: 29609175
Modulation of Antioxidant Defense System Is Associated with Combined Drought and Heat Stress Tolerance in Citrus.
Zandalinas SI, Balfagon D, Arbona V, Gomez-Cadenas A., Front Plant Sci 8(), 2017
PMID: 28638395
Photochemical responses and oxidative stress in two clones of Coffea canephora under water deficit conditions
Lima A.L.S., DaMatta F.M., Pinheiro H.A., Totola M.R., Loureiro M.E.., 2002
Proteomic responses of drought-tolerant and drought-sensitive cotton varieties to drought stress.
Zhang H, Ni Z, Chen Q, Guo Z, Gao W, Su X, Qu Y., Mol. Genet. Genomics 291(3), 2016
PMID: 26941218
Detecting early signs of heat and drought stress in Phoenix dactylifera (date palm).
Safronov O, Kreuzwieser J, Haberer G, Alyousif MS, Schulze W, Al-Harbi N, Arab L, Ache P, Stempfl T, Kruse J, Mayer KX, Hedrich R, Rennenberg H, Salojarvi J, Kangasjarvi J., PLoS ONE 12(6), 2017
PMID: 28570677
Over-expression of ascorbate peroxidase in tobacco chloroplasts enhances the tolerance to salt stress and water deficit.
Badawi GH, Kawano N, Yamauchi Y, Shimada E, Sasaki R, Kubo A, Tanaka K., Physiol Plant 121(2), 2004
PMID: 15153190
The combined effect of drought stress and heat shock on gene expression in tobacco.
Rizhsky L, Liang H, Mittler R., Plant Physiol. 130(3), 2002
PMID: 12427981
Proteomics uncovers a role for redox in drought tolerance in wheat.
Hajheidari M, Eivazi A, Buchanan BB, Wong JH, Majidi I, Salekdeh GH., J. Proteome Res. 6(4), 2007
PMID: 17343403
Glutathione reductase in leaves of cowpea: cloning of two cDNAs, expression and enzymatic activity under progressive drought stress, desiccation and abscisic acid treatment.
Contour-Ansel D, Torres-Franklin ML, Cruz DE Carvalho MH, D'Arcy-Lameta A, Zuily-Fodil Y., Ann. Bot. 98(6), 2006
PMID: 17008354
Molecular characterization and expression profiling of the protein disulfide isomerase gene family in Brachypodium distachyon L.
Zhu C, Luo N, He M, Chen G, Zhu J, Yin G, Li X, Hu Y, Li J, Yan Y., PLoS ONE 9(4), 2014
PMID: 24747843
Identification and characterization of a PutCu/Zn-SOD gene from Puccinellia tenuiflora (Turcz.) Scribn. et Merr
Wu J., Zhang J., Li X., Xu J.J., Wang L.., 2016
Plant Abiotic Stress Proteomics: The Major Factors Determining Alterations in Cellular Proteome.
Kosova K, Vitamvas P, Urban MO, Prasil IT, Renaut J., Front Plant Sci 9(), 2018
PMID: 29472941
Thioredoxins in Arabidopsis and other plants.
Meyer Y, Reichheld JP, Vignols F., Photosyn. Res. 86(3), 2005
PMID: 16307307
Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis.
Davletova S, Rizhsky L, Liang H, Shengqiang Z, Oliver DJ, Coutu J, Shulaev V, Schlauch K, Mittler R., Plant Cell 17(1), 2004
PMID: 15608336
The function of peroxiredoxins in plant organelle redox metabolism.
Dietz KJ, Jacob S, Oelze ML, Laxa M, Tognetti V, de Miranda SM, Baier M, Finkemeier I., J. Exp. Bot. 57(8), 2006
PMID: 16606633
Content of sugars in leaves of drying desiccation tolerant flowering plants, particularly grasses
Ghasempour H.R., Gaff D.F., Williams R.P.W., Gianello R.D.., 1998
Trehalose and its applications in plant biotechnology
Almeida A.M., Cardoso L.A., Santos D.M., Torne J.M., Fevereiro P.S.., 2007
Novel carbohydrate metabolism in the resurrection plant Craterostigma plantagineum.
Bianchi G, Gamba A, Murelli C, Salamini F, Bartels D., Plant J. 1(3), 1991
PMID: 29345773
Sugar ratios, glutathione redox status and phenols in the resurrection species Haberlea rhodopensis and the closely related non-resurrection species Chirita eberhardtii.
Djilianov D, Ivanov S, Moyankova D, Miteva L, Kirova E, Alexieva V, Joudi M, Peshev D, Van den Ende W., Plant Biol (Stuttg) 13(5), 2011
PMID: 21815981
Vegetative desiccation tolerance: Is it a goldmine for bioengineering crops?
Toldi Otto, Scott Peter., Plant Sci. 176(2), 2009
PMID: IND44141303
Revival of a resurrection plant correlates with its antioxidant status.
Kranner I, Beckett RP, Wornik S, Zorn M, Pfeifhofer HW., Plant J. 31(1), 2002
PMID: 12100479
Desiccation tolerance mechanism in resurrection fern-ally Selaginella tamariscina revealed by physiological and proteomic analysis.
Wang X, Chen S, Zhang H, Shi L, Cao F, Guo L, Xie Y, Wang T, Yan X, Dai S., J. Proteome Res. 9(12), 2010
PMID: 20923197
Molecular mechanisms of desiccation tolerance in the resurrection glacial relic Haberlea rhodopensis.
Gechev TS, Benina M, Obata T, Tohge T, Sujeeth N, Minkov I, Hille J, Temanni MR, Marriott AS, Bergstrom E, Thomas-Oates J, Antonio C, Mueller-Roeber B, Schippers JH, Fernie AR, Toneva V., Cell. Mol. Life Sci. 70(4), 2012
PMID: 22996258
The physiology and proteomics of drought tolerance in maize: early stomatal closure as a cause of lower tolerance to short-term dehydration?
Benesova M, Hola D, Fischer L, Jedelsky PL, Hnilicka F, Wilhelmova N, Rothova O, Kocova M, Prochazkova D, Honnerova J, Fridrichova L, Hnilickova H., PLoS ONE 7(6), 2012
PMID: 22719860
The physiology of poikilohydric plants
Hartung W., Schiller P., Dietz K.J.., 1997
Resurrection plants: The puzzle of surviving extreme vegetative desiccation
Rascio N., La N.., 2005
Abscisic acid and the induction of desiccation tolerance in the extremely xerophilic liverwort Exormotheca holstii
Hellwege E.M., Dietz K.J., Volk O.H., Hartung W.., 1994
Characterization of salicylic acid-mediated modulation of the drought stress responses: Reactive oxygen species, proline, and redox state in Brassica napus
La V.H., Lee B.R., Islam M.T., Park S.H., Jung H.I., Bae D.W., Kim T.H.., 2019
Understanding plant responses to drought — from genes to the whole plant
Chaves MM, Maroco JP, Pereira JS., Funct. Plant Biol. 30(3), 2003
PMID: IND44640437
Redox-sensitive GFP in Arabidopsis thaliana is a quantitative biosensor for the redox potential of the cellular glutathione redox buffer.
Meyer AJ, Brach T, Marty L, Kreye S, Rouhier N, Jacquot JP, Hell R., Plant J. 52(5), 2007
PMID: 17892447
Genetically encoded fluorescent indicator for intracellular hydrogen peroxide.
Belousov VV, Fradkov AF, Lukyanov KA, Staroverov DB, Shakhbazov KS, Terskikh AV, Lukyanov S., Nat. Methods 3(4), 2006
PMID: 16554833

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 30965652
PubMed | Europe PMC

Suchen in

Google Scholar