Deuteration-Induced Volume Phase Transition Temperature Shift of PNIPMAM Microgels

Cors M, Wiehemeier L, Oberdisse J, Hellweg T (2019)
Polymers 11(4): 620.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 1.08 MB
Abstract / Bemerkung
The effect of deuteration on the volume phase transition (VPT) temperature of poly (N-isopropylmethacrylamide) (pNIPMAM) microgels in aqueous suspension is determined via IR spectroscopy and size measurements by photon correlation spectroscopy (PCS). We study the effect of a hydrogenated and a deuterated solvent (H2O/D2O), and of the hydrogenated and (partially) deuterated monomer. Deuteration of the monomer or copolymerization with deuterated monomers shifts the volume phase transition temperature (VPTT) by up to 8.4 K to higher temperatures, in good agreement with known results for pNIPAM microgels. Moreover, the shape of the swelling curve is found to depend on deuteration, with the highest deuteration leading to the sharpest VPT. Finally, the quantitative agreement between FTIR spectroscopy and PCS evidences the spatial homogeneity of the microgel particles. Our results are rationalized in terms of the effect of deuteration on hydrogen bonding. They shall be of primary importance for any experimental measurements close to the VPT involving isotopic substitution, and in particular contrast variation small angle neutron scattering.
Stichworte
microgel; deuteration; isotope effect; NIPMAM; VPTT shift
Erscheinungsjahr
2019
Zeitschriftentitel
Polymers
Band
11
Ausgabe
4
Art.-Nr.
620
ISSN
2073-4360
eISSN
2073-4360
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Deutsche Forschungsgemeinschaft und die Universität Bielefeld gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2934769

Zitieren

Cors M, Wiehemeier L, Oberdisse J, Hellweg T. Deuteration-Induced Volume Phase Transition Temperature Shift of PNIPMAM Microgels. Polymers. 2019;11(4): 620.
Cors, M., Wiehemeier, L., Oberdisse, J., & Hellweg, T. (2019). Deuteration-Induced Volume Phase Transition Temperature Shift of PNIPMAM Microgels. Polymers, 11(4), 620. doi:10.3390/polym11040620
Cors, Marian, Wiehemeier, Lars, Oberdisse, Julian, and Hellweg, Thomas. 2019. “Deuteration-Induced Volume Phase Transition Temperature Shift of PNIPMAM Microgels”. Polymers 11 (4): 620.
Cors, M., Wiehemeier, L., Oberdisse, J., and Hellweg, T. (2019). Deuteration-Induced Volume Phase Transition Temperature Shift of PNIPMAM Microgels. Polymers 11:620.
Cors, M., et al., 2019. Deuteration-Induced Volume Phase Transition Temperature Shift of PNIPMAM Microgels. Polymers, 11(4): 620.
M. Cors, et al., “Deuteration-Induced Volume Phase Transition Temperature Shift of PNIPMAM Microgels”, Polymers, vol. 11, 2019, : 620.
Cors, M., Wiehemeier, L., Oberdisse, J., Hellweg, T.: Deuteration-Induced Volume Phase Transition Temperature Shift of PNIPMAM Microgels. Polymers. 11, : 620 (2019).
Cors, Marian, Wiehemeier, Lars, Oberdisse, Julian, and Hellweg, Thomas. “Deuteration-Induced Volume Phase Transition Temperature Shift of PNIPMAM Microgels”. Polymers 11.4 (2019): 620.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:19:06Z
MD5 Prüfsumme
3ec59e93a3274e90758d0679e227dbbe


72 References

Daten bereitgestellt von Europe PubMed Central.

Temperature-sensitive aqueous microgels.
Pelton R., Adv Colloid Interface Sci 85(1), 2000
PMID: 10696447
Gel architectures and their complexity.
Richtering W, Saunders BR., Soft Matter 10(21), 2014
PMID: 24705716
Thermally modulated insulin release from microgel thin films.
Nolan CM, Serpe MJ, Lyon LA., Biomacromolecules 5(5), 2004
PMID: 15360309
Soft nanotechnology with soft nanoparticles.
Nayak S, Lyon LA., Angew. Chem. Int. Ed. Engl. 44(47), 2005
PMID: 16283684
Doxorubicin uptake and release from microgel thin films.
Serpe MJ, Yarmey KA, Nolan CM, Lyon LA., Biomacromolecules 6(1), 2005
PMID: 15638546
Pulsatile release of insulin from layer-by-layer assembled microgel thin films
Nolan C.M., Serpe M.J., Lyon L.A.., 2005
Microgels: From responsive polymer colloids to biomaterials.
Saunders BR, Laajam N, Daly E, Teow S, Hu X, Stepto R., Adv Colloid Interface Sci 147-148(), 2008
PMID: 18809173
Towards large-scale photonic crystals with tuneable bandgaps.
Hellweg T., Angew. Chem. Int. Ed. Engl. 48(37), 2009
PMID: 19670282
Structure and plasmon coupling of gold-poly(N-isopropylacrylamide) coreshell microgel arrays with thermally controlled interparticle gap
Clara-Rahola J., Contreras-Caceres R., Sierra-Martin B., Maldonado-Valdivia A., Hund M., Fery A., Hellweg T., Fernandez-Barbero A.., 2014
smart nanoparticles: Preparation, characterization and applications
Ballauff M., Lu Y.., 2007
Thermosensitive core-shell microgel as a nanoreactor for catalytic active metal nanoparticles
Lu Y., Proch S., Schrinner M., Drechsler M., Kempe R., Ballauff M.., 2009
Thermosensitive coreshell microgels: From colloidal model systems to nanoreactors
Lu Y., Ballauff M.., 2011
Coreshell microgels as smart carriers for enzymes
Welsch N., Becker A.L., Dzubiella J., Ballauff M.., 2012
Responsive microgels at surfaces and interfaces
Wellert S., Richter M., Hellweg T., von R., Hertle Y.., 2015
Core-Shell Microgel-Based Surface Coatings with Linear Thermoresponse.
Cors M, Wrede O, Genix AC, Anselmetti D, Oberdisse J, Hellweg T., Langmuir 33(27), 2017
PMID: 28628746
Understanding and controlling the self-folding behavior of poly (N-isopropylacrylamide) microgel-based devices
Li X., Serpe M.J.., 2014
Lipase-modified pH-responsive microgel-based optical device for triglyceride sensing.
Zhang QM, Berg D, Mugo SM, Serpe MJ., Chem. Commun. (Camb.) 51(47), 2015
PMID: 25983030
Volume phase transition in a nonionic gel
AUTHOR UNKNOWN, 1984
Microgel particles as model colloids: Theory, properties and applications
Saunders B.R., Vincent B.., 1999
Heterogeneous morphology of random copolymer microgels as reflected in temperature-induced volume transition and 1H high-resolution transverse relaxation NMR
Balaceanu A., Demco D.E., Möller M., Pich A.., 2011
Behavior of temperature-responsive copolymer microgels at the oil/water interface.
Wu Y, Wiese S, Balaceanu A, Richtering W, Pich A., Langmuir 30(26), 2014
PMID: 24926817
Temperature-sensitive core-shell microgel particles with dense shell.
Berndt I, Pedersen JS, Richtering W., Angew. Chem. Int. Ed. Engl. 45(11), 2006
PMID: 16470901
Non NIPAM based smart microgels: Systematic variation of the volume phase transition temperature by copolymerization
Wedel B., Zeiser M., Hellweg T.., 2012
Anisotropic responsive microgels with tuneable shape and interactions.
Crassous JJ, Mihut AM, Mansson LK, Schurtenberger P., Nanoscale 7(38), 2015
PMID: 26367504
Linearly thermoresponsive coreshell microgels: Towards a new class of nanoactuators
Zeiser M., Freudensprung I., Hellweg T.., 2012
Development of fluorescent microgel thermometers based on thermo-responsive polymers and their modulation of sensitivity range
Iwai K., Matsumura Y., Uchiyama S., de A.P.., 2005
Introduction to Scattering Experiments
Pusey P.N.., 2002
Small-angle neutron scattering study of structural changes in temperature sensitive microgel colloids.
Stieger M, Richtering W, Pedersen JS, Lindner P., J Chem Phys 120(13), 2004
PMID: 15267506
Swelling of micro-hydrogels with a crosslinker gradient.
Boon N, Schurtenberger P., Phys Chem Chem Phys 19(35), 2017
PMID: 28607971
Determination of Internal Density Profiles of Smart Acrylamide-Based Microgels by Small-Angle Neutron Scattering: A Multishell Reverse Monte Carlo Approach.
Cors M, Wiehemeier L, Hertle Y, Feoktystov A, Cousin F, Hellweg T, Oberdisse J., Langmuir 34(50), 2018
PMID: 30421936
Temperature sensitive copolymer microgels with nanophase separated structure.
Keerl M, Pedersen JS, Richtering W., J. Am. Chem. Soc. 131(8), 2009
PMID: 19206229
Copolymer microgels by precipitation polymerisation of N-vinylcaprolactam and N-isopropylacrylamides in aqueous medium
Balaceanu A., Mayorga V., Lin W., Schürings Ma., Demco D.E., Böker A., Winnik M.A., Pich A.., 2012
Inner structure of adsorbed ionic microgel particles.
Wellert S, Hertle Y, Richter M, Medebach M, Magerl D, Wang W, Deme B, Radulescu A, Muller-Buschbaum P, Hellweg T, von Klitzing R., Langmuir 30(24), 2014
PMID: 24920223
Doubly temperature sensitive core-shell microgels
Berndt I., Richtering W.., 2003
Structure of multiresponsive "intelligent" core-shell microgels.
Berndt I, Pedersen JS, Richtering W., J. Am. Chem. Soc. 127(26), 2005
PMID: 15984856
Responsive core-shell microgels: Synthesis, characterization, and possible applications
Hellweg T.., 2013
Arylation with unsymmetrical diaryliodonium salts: a chemoselectivity study.
Malmgren J, Santoro S, Jalalian N, Himo F, Olofsson B., Chemistry 19(31), 2013
PMID: 23788251
Core-shell-shell and hollow double-shell microgels with advanced temperature responsiveness.
Dubbert J, Nothdurft K, Karg M, Richtering W., Macromol Rapid Commun 36(2), 2014
PMID: 25354836
Swelling of a responsive network within different constraints in multi-thermosensitive microgels
Brugnoni M., Scotti A., Rudov A.A., Gelissen A.P.H., Caumanns T., Radulescu A., Eckert T., Pich A., Potemkin I.I., Richtering W.., 2018
How hollow are thermoresponsive hollow nanogels?
Dubbert J., Honold T., Pedersen J., Radulescu A., Drechsler M., Karg M., Richtering W.., 2014
Multi-Shell Hollow Nanogels with Responsive Shell Permeability.
Schmid AJ, Dubbert J, Rudov AA, Pedersen JS, Lindner P, Karg M, Potemkin II, Richtering W., Sci Rep 6(), 2016
PMID: 26984478
Interpenetration of polymeric microgels at ultrahigh densities.
Mohanty PS, Nojd S, van Gruijthuijsen K, Crassous JJ, Obiols-Rabasa M, Schweins R, Stradner A, Schurtenberger P., Sci Rep 7(1), 2017
PMID: 28469168
Hollow microgels squeezed in overcrowded environments.
Scotti A, Brugnoni M, Rudov AA, Houston JE, Potemkin II, Richtering W., J Chem Phys 148(17), 2018
PMID: 29739205
Deswelling behaviour of ionic microgel particles from low to ultra-high densities.
Nojd S, Holmqvist P, Boon N, Obiols-Rabasa M, Mohanty PS, Schweins R, Schurtenberger P., Soft Matter 14(20), 2018
PMID: 29744516
Ordering in a nematic side-chain polymer. A proton and deuterium nuclear magnetic resonance study
Holstein P., Barmatov E.B., Geschke D., Bender M., Shibaev V.P.., 2000
Biopolymer deuteration for neutron scattering and other isotope-sensitive techniques.
Russell RA, Garvey CJ, Darwish TA, Foster LJ, Holden PJ., Meth. Enzymol. 565(), 2015
PMID: 26577729
Preparation of a deuterated polymer: Simulating to produce a solid tritium radioactive source
Hu R., Kan W., Xiong X., Wei H.., 2017
Factors affecting the swelling of poly(n-isopropylacrylamide) microgel particles: Fundamental and commercial implications
Saunders B.R., Crowther H.M., Morris G.E., Mears S.J., Cosgrove T., Vincent B.., 1999
Poly(NIPAM) microgel particle de-swelling: A light scattering and small-angle neutron scattering study
Crowther H.M., Saunders B.R., Mears S.J., Cosgrove T., Vincent B., King S.M., Yu G.-F.., 1999
Analysis of macromolecular polydispersity in intensity correlation spectroscopy: The method of cumulants
Koppel D.E.., 1972
Modification to the cumulant analysis of polydispersity in quasielastic light scattering data.
Hassan PA, Kulshreshtha SK., J Colloid Interface Sci 300(2), 2006
PMID: 16790246
Swelling behaviour of core-shell microgels in H2O, analysed by temperature-dependent FTIR spectroscopy.
Wiehemeier L , Cors M , Wrede O , Oberdisse J , Hellweg T , Kottke T ., Phys Chem Chem Phys 21(2), 2019
PMID: 30539186
Control of number density and swelling/shrinking behavior of p(NIPAMAAc) particles at solid surfaces
Burmistrova A., von R.., 2010
Temperature-induced molecular transport through polymer multilayers coated with PNIPAM microgels.
Vikulina AS, Aleed ST, Paulraj T, Vladimirov YA, Duschl C, von Klitzing R, Volodkin D., Phys Chem Chem Phys 17(19), 2015
PMID: 25906292
Super-resolution optical microscopy resolves network morphology of smart colloidal microgels.
Bergmann S , Wrede O , Huser T , Hellweg T ., Phys Chem Chem Phys 20(7), 2018
PMID: 29392265
Structural changes in PNIPAM microgel particles as seen by SANS, DLS, and EM techniques
Kratz K., Hellweg T., Eimer W.., 2001
A comparison between the coil-to-globule transition of linear chains and the volume phase transition of spherical microgels1dedicated to the 80th birthday of professor renyuan qian.1
Wu C.., 1998
Thermoresponsive poly-(N-isopropylmethacrylamide) microgels: Tailoring particle size by interfacial tension control
von K., Karg M., Hellweg T.., 2013
Position-specific secondary deuterium isotope effects on basicity of pyridine.
Perrin CL, Karri P., J. Am. Chem. Soc. 132(34), 2010
PMID: 20701292
Interplay between hydrogen bonding and macromolecular architecture leading to unusual phase behavior in thermosensitive microgels.
Keerl M, Smirnovas V, Winter R, Richtering W., Angew. Chem. Int. Ed. Engl. 47(2), 2008
PMID: 18022987
Deuterium isotope effects on hydrophobic interactions: the importance of dispersion interactions in the hydrophobic phase.
Turowski M, Yamakawa N, Meller J, Kimata K, Ikegami T, Hosoya K, Tanaka N, Thornton ER., J. Am. Chem. Soc. 125(45), 2003
PMID: 14599224
Small angle neutron scattering study on poly(n-isopropyl acrylamide) gels near their volume-phase transition temperature
Shibayama M., Tanaka T., Han C.C.., 1992
N-isopropylacrylamide andN-isopropylmethacryl-amide: Cloud points of mixtures and copolymers
Djokpé E., Vogt W.., 2001
Exploring the volume phase transition behavior of POEGA- and PNIPAM-based coreshell nanogels from infrared-spectral insights
Hou L., Ma K., An Z., Wu P.., 2014
Copolymer microgels from mono- and disubstituted acrylamides: Phase behavior and hydrogen bonds
Keerl M., Smirnovas V., Winter R., Richtering W.., 2008
Change in hydration state during the coil-globule transition of aqueous solutions of poly(n-isopropylacrylamide) as evidenced by FTIR spectroscopy
Maeda Y., Higuchi T., Ikeda I.., 2000
Relative hydrogen bonding of deuterium. I. ionization constants of maleic and fumaric acids and of their monoethyl esters in HO and DO
Dahlgren G., Long F.A.., 1960
Proton transfer in hydrogen bonded systems
Bellamy L.J., Rogasch P.E.., 1960
The deuterium isotope effect in the hydrogen bonding of imidazole in naphthalene solutions
Grimison A.., 1963
Deuterium isotope effects on hydrogen bonding
Singh S., Rao C.N.R.., 1966
Material in PUB:
Teil dieser Dissertation
Structure property correlations of microgels with complex architectures
Cors M (2019)
Bielefeld: Universität Bielefeld.
Teil dieser Dissertation
Soft Matter Systems Analysed with Interferometric Methods
Wiehemeier L (2020)
Bielefeld: Universität Bielefeld.
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 30960604
PubMed | Europe PMC

Suchen in

Google Scholar