Interference between arsenic-induced toxicity and hypoxia

Kumar V, Vogelsang L, Seidel T, Schmidt R, Weber M, Reichelt M, Meyer A, Clemens S, Sharma SS, Dietz K-J (2019)
Plant, Cell & Environment 42(2): 574-590.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Kumar, VijayUniBi; Vogelsang, LaraUniBi; Seidel, ThorstenUniBi; Schmidt, RomyUniBi; Weber, Michael; Reichelt, Michael; Meyer, Andreas; Clemens, Stephan; Sharma, Shanti S.; Dietz, Karl-JosefUniBi
Abstract / Bemerkung
Plants often face combinatorial stresses in their natural environment. Here, arsenic (As) toxicity was combined with hypoxia (Hpx) in the roots of Arabidopsis thaliana as it often occurs in nature. Arsenic inhibited growth of both roots and leaves, whereas root growth almost entirely ceased in Hpx. Growth efficiently resumed, and Hpx marker transcripts decreased upon reaeration. Compromised recovery from HpxAs treatment following reaeration indicated some persistent effects of combined stresses despite lower As accumulation. Root glutathione redox potential turned more oxidized in Hpx and most strongly in HpxAs. The more oxidizing root cell redox potential and the lowered glutathione amounts may be conducive to the growth arrest of plants exposed to HpxAs. The stresses elicited changes in elemental and transcriptomic composition. Thus, calcium, magnesium, and phosphorous amounts decreased in rosettes, but the strongest decline was seen for potassium. The reorganized potassium-related transcriptome supports the conclusion that disturbed potassium homeostasis contributes to the growth phenotype. In a converse manner, photosynthesis-related parameters were hardly affected, whereas accumulated carbohydrates under all stresses and anthocyanins under Hpx exclude carbohydrate limitation. The study demonstrates the existence of both synergistic since mutually aggravating effects and antagonistic effects of single and combined stresses.
Plant, Cell & Environment
Page URI


Kumar V, Vogelsang L, Seidel T, et al. Interference between arsenic-induced toxicity and hypoxia. Plant, Cell & Environment. 2019;42(2):574-590.
Kumar, V., Vogelsang, L., Seidel, T., Schmidt, R., Weber, M., Reichelt, M., Meyer, A., et al. (2019). Interference between arsenic-induced toxicity and hypoxia. Plant, Cell & Environment, 42(2), 574-590.
Kumar, Vijay, Vogelsang, Lara, Seidel, Thorsten, Schmidt, Romy, Weber, Michael, Reichelt, Michael, Meyer, Andreas, Clemens, Stephan, Sharma, Shanti S., and Dietz, Karl-Josef. 2019. “Interference between arsenic-induced toxicity and hypoxia”. Plant, Cell & Environment 42 (2): 574-590.
Kumar, V., Vogelsang, L., Seidel, T., Schmidt, R., Weber, M., Reichelt, M., Meyer, A., Clemens, S., Sharma, S. S., and Dietz, K. - J. (2019). Interference between arsenic-induced toxicity and hypoxia. Plant, Cell & Environment 42, 574-590.
Kumar, V., et al., 2019. Interference between arsenic-induced toxicity and hypoxia. Plant, Cell & Environment, 42(2), p 574-590.
V. Kumar, et al., “Interference between arsenic-induced toxicity and hypoxia”, Plant, Cell & Environment, vol. 42, 2019, pp. 574-590.
Kumar, V., Vogelsang, L., Seidel, T., Schmidt, R., Weber, M., Reichelt, M., Meyer, A., Clemens, S., Sharma, S.S., Dietz, K.-J.: Interference between arsenic-induced toxicity and hypoxia. Plant, Cell & Environment. 42, 574-590 (2019).
Kumar, Vijay, Vogelsang, Lara, Seidel, Thorsten, Schmidt, Romy, Weber, Michael, Reichelt, Michael, Meyer, Andreas, Clemens, Stephan, Sharma, Shanti S., and Dietz, Karl-Josef. “Interference between arsenic-induced toxicity and hypoxia”. Plant, Cell & Environment 42.2 (2019): 574-590.

101 References

Daten bereitgestellt von Europe PubMed Central.

Transcriptional responses of Arabidopsis thaliana plants to As (V) stress.
Abercrombie JM, Halfhill MD, Ranjan P, Rao MR, Saxton AM, Yuan JS, Stewart CN Jr., BMC Plant Biol. 8(), 2008
PMID: 18684332
Hormonal changes in relation to biomass partitioning and shoot growth impairment in salinized tomato (Solanum lycopersicum L.) plants.
Albacete A, Ghanem ME, Martinez-Andujar C, Acosta M, Sanchez-Bravo J, Martinez V, Lutts S, Dodd IC, Perez-Alfocea F., J. Exp. Bot. 59(15), 2008
PMID: 19036841
Bleach gel: a simple agarose gel for analyzing RNA quality.
Aranda PS, LaJoie DM, Jorcyk CL., Electrophoresis 33(2), 2012
PMID: 22222980
Heatmapper: web-enabled heat mapping for all.
Babicki S, Arndt D, Marcu A, Liang Y, Grant JR, Maciejewski A, Wishart DS., Nucleic Acids Res. 44(W1), 2016
PMID: 27190236
Flooding stress: acclimations and genetic diversity.
Bailey-Serres J, Voesenek LA., Annu Rev Plant Biol 59(), 2008
PMID: 18444902
Life in the balance: a signaling network controlling survival of flooding.
Bailey-Serres J, Voesenek LA., Curr. Opin. Plant Biol. 13(5), 2010
PMID: 20813578
Effects of combined abiotic stresses on growth, trace element accumulation, and phytohormone regulation in two halophytic species
Bankaji, Journal of Plant Growth Regulation 33(3), 2014
Oxidative metabolism, ROS and NO under oxygen deprivation.
Blokhina O, Fagerstedt KV., Plant Physiol. Biochem. 48(5), 2010
PMID: 20303775
Unraveling abiotic stress tolerance mechanisms--getting genomics going.
Bohnert HJ, Gong Q, Li P, Ma S., Curr. Opin. Plant Biol. 9(2), 2006
PMID: 16458043
A mutant of the Arabidopsis phosphate transporter PHT1;1 displays enhanced arsenic accumulation.
Catarecha P, Segura MD, Franco-Zorrilla JM, Garcia-Ponce B, Lanza M, Solano R, Paz-Ares J, Leyva A., Plant Cell 19(3), 2007
PMID: 17400898
Flooding tolerance: suites of plant traits in variable environments
Colmer TD, Voesenek LACJ., Funct. Plant Biol. 36(8), 2009
PMID: IND44235748
Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants
Das, Frontiers in Environmental Science 2(), 2014
Arsenate toxicity on the apices of Pisum sativum L. seedling roots: Effects on mitotic activity, chromatin integrity and microtubules
Dho, Environmental and Experimental Botany 69(), 2010
A nuclear glutathione cycle within the cell cycle.
Diaz Vivancos P, Wolff T, Markovic J, Pallardo FV, Foyer CH., Biochem. J. 431(2), 2010
PMID: 20874710
Sulfur mediated reduction of arsenic toxicity involves efficient thiol metabolism and the antioxidant defense system in rice.
Dixit G, Singh AP, Kumar A, Singh PK, Kumar S, Dwivedi S, Trivedi PK, Pandey V, Norton GJ, Dhankher OP, Tripathi RD., J. Hazard. Mater. 298(), 2015
PMID: 26073379
Ecophysiology of plants in waterlogged and flooded environments
Ernst, Aquatic Botany 38(1), 1990
Arsenic toxicity: the effects on plant metabolism.
Finnegan PM, Chen W., Front Physiol 3(), 2012
PMID: 22685440
Managing the cellular redox hub in photosynthetic organisms.
Foyer CH, Noctor G., Plant Cell Environ. 35(2), 2011
PMID: 22070467
Homeostatic response to hypoxia is regulated by the N-end rule pathway in plants.
Gibbs DJ, Lee SC, Isa NM, Gramuglia S, Fukao T, Bassel GW, Correia CS, Corbineau F, Theodoulou FL, Bailey-Serres J, Holdsworth MJ., Nature 479(7373), 2011
PMID: 22020279

Good, 1977
Investigating mitochondrial redox potential with redox-sensitive green fluorescent protein indicators.
Hanson GT, Aggeler R, Oglesbee D, Cannon M, Capaldi RA, Tsien RY, Remington SJ., J. Biol. Chem. 279(13), 2004
PMID: 14722062
Arsenic toxicity and potential mechanisms of action.
Hughes MF., Toxicol. Lett. 133(1), 2002
PMID: 12076506

IBM, 2011
Exploration, normalization, and summaries of high density oligonucleotide array probe level data.
Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP., Biostatistics 4(2), 2003
PMID: 12925520
The Arabidopsis thaliana aquaglyceroporin AtNIP7;1 is a pathway for arsenite uptake.
Isayenkov SV, Maathuis FJ., FEBS Lett. 582(11), 2008
PMID: 18435919
Biochemical mechanisms of signaling: perspectives in plants under arsenic stress.
Islam E, Khan MT, Irem S., Ecotoxicol. Environ. Saf. 114(), 2015
PMID: 25637747
Monodehydroascorbate reductase mediates TNT toxicity in plants.
Johnston EJ, Rylott EL, Beynon E, Lorenz A, Chechik V, Bruce NC., Science 349(6252), 2015
PMID: 26339024
Vacuolar sulfate transporters are essential determinants controlling internal distribution of sulfate in Arabidopsis.
Kataoka T, Watanabe-Takahashi A, Hayashi N, Ohnishi M, Mimura T, Buchner P, Hawkesford MJ, Yamaya T, Takahashi H., Plant Cell 16(10), 2004
PMID: 15367713
Assessing redox state and reactive oxygen species in circadian rhythmicity.
Konig K, Galliardt H, Moore M, Treffon P, Seidel T, Dietz KJ., Methods Mol. Biol. 1158(), 2014
PMID: 24792057
Oxygen sensing in plants is mediated by an N-end rule pathway for protein destabilization.
Licausi F, Kosmacz M, Weits DA, Giuntoli B, Giorgi FM, Voesenek LA, Perata P, van Dongen JT., Nature 479(7373), 2011
PMID: 22020282
Chlorophylls and carotenoids: Measurement and characterization by UV-VIS spectroscopy
Lichtenthaler, Current Protocols in Food Analytical Chemistry F4(3), 2001
New Molecular Mechanisms to Reduce Arsenic in Crops.
Lindsay ER, Maathuis FJM., Trends Plant Sci. 22(12), 2017
PMID: 29056439
PANTHER version 7: improved phylogenetic trees, orthologs and collaboration with the Gene Ontology Consortium.
Mi H, Dong Q, Muruganujan A, Gaudet P, Lewis S, Thomas PD., Nucleic Acids Res. 38(Database issue), 2009
PMID: 20015972
Oxidative stress, antioxidants and stress tolerance.
Mittler R., Trends Plant Sci. 7(9), 2002
PMID: 12234732
Reactive oxygen gene network of plants.
Mittler R, Vanderauwera S, Gollery M, Van Breusegem F., Trends Plant Sci. 9(10), 2004
PMID: 15465684
Chlorophyll fluorescence measurements in Arabidopsis plants using a pulse-amplitude-modulated (PAM) fluorometer
Motohashi, Bio-Protocol 5(9), 2015
Glutathione in plants: an integrated overview.
Noctor G, Mhamdi A, Chaouch S, Han Y, Neukermans J, Marquez-Garcia B, Queval G, Foyer CH., Plant Cell Environ. 35(2), 2011
PMID: 21777251
Cyclophilin 20-3 relays a 12-oxo-phytodienoic acid signal during stress responsive regulation of cellular redox homeostasis.
Park SW, Li W, Viehhauser A, He B, Kim S, Nilsson AK, Andersson MX, Kittle JD, Ambavaram MM, Luan S, Esker AR, Tholl D, Cimini D, Ellerstrom M, Coaker G, Mitchell TK, Pereira A, Dietz KJ, Lawrence CB., Proc. Natl. Acad. Sci. U.S.A. 110(23), 2013
PMID: 23671085
Mitochondrial generation of free radicals and hypoxic signaling.
Poyton RO, Ball KA, Castello PR., Trends Endocrinol. Metab. 20(7), 2009
PMID: 19733481
Signaling events in plants: Stress factors in combination change the picture
Prasch, Environmental and Experimental Botany 114(), 2015
ROS signaling as common element in low oxygen and heat stresses.
Pucciariello C, Banti V, Perata P., Plant Physiol. Biochem. 59(), 2012
PMID: 22417734
Light, temperature, and anthocyanin production.
Rabino I, Mancinelli AL., Plant Physiol. 81(3), 1986
PMID: 16664926
Cytosolic and Chloroplastic DHARs Cooperate in Oxidative Stress-Driven Activation of the Salicylic Acid Pathway.
Rahantaniaina MS, Li S, Chatel-Innocenti G, Tuzet A, Issakidis-Bourguet E, Mhamdi A, Noctor G., Plant Physiol. 174(2), 2017
PMID: 28381499
Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data.
Ramakers C, Ruijter JM, Deprez RH, Moorman AF., Neurosci. Lett. 339(1), 2003
PMID: 12618301
Transcriptome responses to combinations of stresses in Arabidopsis.
Rasmussen S, Barah P, Suarez-Rodriguez MC, Bressendorff S, Friis P, Costantino P, Bones AM, Nielsen HB, Mundy J., Plant Physiol. 161(4), 2013
PMID: 23447525
The Pht1;9 and Pht1;8 transporters mediate inorganic phosphate acquisition by the Arabidopsis thaliana root during phosphorus starvation.
Remy E, Cabrito TR, Batista RA, Teixeira MC, Sa-Correia I, Duque P., New Phytol. 195(2), 2012
PMID: 22578268
When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress.
Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S, Mittler R., Plant Physiol. 134(4), 2004
PMID: 15047901
S-nitrosylation of peroxiredoxin II E promotes peroxynitrite-mediated tyrosine nitration.
Romero-Puertas MC, Laxa M, Matte A, Zaninotto F, Finkemeier I, Jones AM, Perazzolli M, Vandelle E, Dietz KJ, Delledonne M., Plant Cell 19(12), 2007
PMID: 18165327
Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data.
Ruijter JM, Ramakers C, Hoogaars WM, Karlen Y, Bakker O, van den Hoff MJ, Moorman AF., Nucleic Acids Res. 37(6), 2009
PMID: 19237396
Characterization of the gene family for alternative oxidase from Arabidopsis thaliana.
Saisho D, Nambara E, Naito S, Tsutsumi N, Hirai A, Nakazono M., Plant Mol. Biol. 35(5), 1997
PMID: 9349280
A possible stress physiological role of abscisic acid conjugates in root-to-shoot signalling.
Sauter A, Dietz KJ, Hartung W., Plant Cell Environ. 25(2), 2002
PMID: 11841665
Detoxification of arsenic by phytochelatins in plants.
Schmoger ME, Oven M, Grill E., Plant Physiol. 122(3), 2000
PMID: 10712543
Analysis of photosystem I donor and acceptor sides with a new type of online-deconvoluting kinetic LED-array spectrophotometer
Schreiber, Plant and Cell Physiology 57(7), 2016
Confocal imaging of glutathione redox potential in living plant cells.
Schwarzlander M, Fricker MD, Muller C, Marty L, Brach T, Novak J, Sweetlove LJ, Hell R, Meyer AJ., J Microsc 231(2), 2008
PMID: 18778428
Alternative Oxidase Isoforms Are Differentially Activated by Tricarboxylic Acid Cycle Intermediates.
Selinski J, Hartmann A, Deckers-Hebestreit G, Day DA, Whelan J, Scheibe R., Plant Physiol. 176(2), 2017
PMID: 29208641
Potassium transport and plant salt tolerance
Shabala S, Cuin TA., Physiol Plant 133(4), 2008
PMID: IND44076452
The relationship between metal toxicity and cellular redox imbalance.
Sharma SS, Dietz KJ., Trends Plant Sci. 14(1), 2008
PMID: 19070530
Vacuolar compartmentalization as indispensable component of heavy metal detoxification in plants.
Sharma SS, Dietz KJ, Mimura T., Plant Cell Environ. 39(5), 2016
PMID: 26729300
Combination toxicology of copper, zinc, and cadmium in binary mixtures: Concentration-dependent antagonistic, non-additive, and synergistic effects on root growth in Silene vulgaris
Sharma, Environmental Toxicology and Chemistry 18(2), 1999
ABA, ethylene and the control of shoot and root growth under water stress.
Sharp RE, LeNoble ME., J. Exp. Bot. 53(366), 2002
PMID: 11741038
What happens to plant mitochondria under low oxygen? An omics review of the responses to low oxygen and reoxygenation.
Shingaki-Wells R, Millar AH, Whelan J, Narsai R., Plant Cell Environ. 37(10), 2014
PMID: 24575773
Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters.
Song WY, Park J, Mendoza-Cozatl DG, Suter-Grotemeyer M, Shim D, Hortensteiner S, Geisler M, Weder B, Rea PA, Rentsch D, Schroeder JI, Lee Y, Martinoia E., Proc. Natl. Acad. Sci. U.S.A. 107(49), 2010
PMID: 21078981
Antioxidant responses of hyper-accumulator and sensitive fern species to arsenic.
Srivastava M, Ma LQ, Singh N, Singh S., J. Exp. Bot. 56(415), 2005
PMID: 15781440
Reactive oxygen species mediate growth and death in submerged plants.
Steffens B, Steffen-Heins A, Sauter M., Front Plant Sci 4(), 2013
PMID: 23761805
Abscisic acid (ABA) and key proteins in its perception and signaling pathways are ancient, but their roles have changed through time.
Sussmilch FC, Atallah NM, Brodribb TJ, Banks JA, McAdam SAM., Plant Signal Behav 12(9), 2017
PMID: 28841357
Multiple abiotic stresses occurring with salinity stress in citrus
Syvertsen, Environmental and Experimental Botany 103(), 2014
12-oxo-phytodienoic acid triggers expression of a distinct set of genes and plays a role in wound-induced gene expression in Arabidopsis.
Taki N, Sasaki-Sekimoto Y, Obayashi T, Kikuta A, Kobayashi K, Ainai T, Yagi K, Sakurai N, Suzuki H, Masuda T, Takamiya K, Shibata D, Kobayashi Y, Ohta H., Plant Physiol. 139(3), 2005
PMID: 16258017
MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes.
Thimm O, Blasing O, Gibon Y, Nagel A, Meyer S, Kruger P, Selbig J, Muller LA, Rhee SY, Stitt M., Plant J. 37(6), 2004
PMID: 14996223
PANTHER: a library of protein families and subfamilies indexed by function.
Thomas PD, Campbell MJ, Kejariwal A, Mi H, Karlak B, Daverman R, Diemer K, Muruganujan A, Narechania A., Genome Res. 13(9), 2003
PMID: 12952881
Effects of arsenate and phosphate on their accumulation by an arsenic-hyperaccumulator Pteris vittata L
Tu, Plant and Soil 249(2), 2003
Primer3Plus, an enhanced web interface to Primer3.
Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen JA., Nucleic Acids Res. 35(Web Server issue), 2007
PMID: 17485472
CML42-mediated calcium signaling coordinates responses to Spodoptera herbivory and abiotic stresses in Arabidopsis.
Vadassery J, Reichelt M, Hause B, Gershenzon J, Boland W, Mithofer A., Plant Physiol. 159(3), 2012
PMID: 22570470
Transcript and metabolite profiling of the adaptive response to mild decreases in oxygen concentration in the roots of arabidopsis plants.
van Dongen JT, Frohlich A, Ramirez-Aguilar SJ, Schauer N, Fernie AR, Erban A, Kopka J, Clark J, Langer A, Geigenberger P., Ann. Bot. 103(2), 2008
PMID: 18660497
Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes.
Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F., Genome Biol. 3(7), 2002
PMID: 12184808
The ROOT MERISTEMLESS1/CADMIUM SENSITIVE2 gene defines a glutathione-dependent pathway involved in initiation and maintenance of cell division during postembryonic root development.
Vernoux T, Wilson RC, Seeley KA, Reichheld JP, Muroy S, Brown S, Maughan SC, Cobbett CS, Van Montagu M, Inze D, May MJ, Sung ZR., Plant Cell 12(1), 2000
PMID: 10634910
Revealing the roles of GORK channels and NADPH oxidase in acclimation to hypoxia in Arabidopsis.
Wang F, Chen ZH, Liu X, Colmer TD, Shabala L, Salih A, Zhou M, Shabala S., J. Exp. Bot. 68(12), 2017
PMID: 28338729
Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction.
Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL., BMC Bioinformatics 13(), 2012
PMID: 22708584
The estimation of carbohydrates in plant extracts by anthrone.
YEMM EW, WILLIS AJ., Biochem. J. 57(3), 1954
PMID: 13181867

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 30198184
PubMed | Europe PMC

Suchen in

Google Scholar