Overlap of Promoter Recognition Specificity of Stress Response Sigma Factors SigD and SigH in Corynebacterium glutamicum ATCC 13032

Dostalova H, Busche T, Holatko J, Rucka L, Stepanek V, Barvik I, Nesvera J, Kalinowski J, Patek M (2019)
FRONTIERS IN MICROBIOLOGY 9: 3287.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ; ; ; ;
Abstract / Bemerkung
Corynebacterium glutamicum ATCC 13032 harbors five sigma subunits of RNA polymerase belonging to Group IV, also called extracytoplasmic function (ECF) sigma factors. These factors sigma(C), sigma(D), sigma(E), sigma(H), and sigma(M) are mostly involved in stress responses. The role of sigma(D) consists in the control of cell wall integrity. The sigma(D) regulon is involved in the synthesis of components of the mycomembrane which is part of the cell wall in C. glutamicum. RNA sequencing of the transcriptome from a strain overexpressing the sigD gene provided 29 potential sigma(D)-controlled genes and enabled us to precisely localize their transcriptional start sites. Analysis of the respective promoters by both in vitro transcription and the in vivo two-plasmid assay confirmed that transcription of 11 of the tested genes is directly sigma(D)-dependent. The key sequence elements of all these promoters were found to be identical or closely similar to the motifs -35 GTAAC(A)/G and -10 GAT. Surprisingly, nearly all of these sigma(D)-dependent promoters were also active to a much lower extent with sigma(H) in vivo and one (Pcg0607) also in vitro, although the known highly conserved consensus sequence of the sigma(H)-dependent promoters is different (-35 GGAA(T)/C and -10 GTT). In addition to the activity of sigma(H) at the sigma(D)-controlled promoters, we discovered separated or overlapping sigma(A) - or sigma(B)-regulated or sigma(H)-regulated promoters within the upstream region of 8 genes of the sigma(D)-regulon. We found that phenol in the cultivation medium acts as a stress factor inducing expression of some sigma(D)-dependent genes. Computer modeling revealed that sigma(H) binds to the promoter DNA in a similar manner as sigma(D) to the analogous promoter elements. The homology models together with mutational analysis showed that the key amino acids, Ala 60 in sigma(D) and Lys 53 in sigma(H), bind to the second nucleotide within the respective -10 promoter elements (GAT and GTT, respectively). The presented data obtained by integrating in vivo, in vitro and in silico approaches demonstrate that most of the sigma(D)-controlled genes also belong to the sigma(H)-regulon and are also transcribed from the overlapping or closely located housekeeping (sigma(A)-regulated) and/or general stress (sigma(B)-regulated) promoters.
Erscheinungsjahr
Zeitschriftentitel
FRONTIERS IN MICROBIOLOGY
Band
9
Art.-Nr.
3287
ISSN
PUB-ID

Zitieren

Dostalova H, Busche T, Holatko J, et al. Overlap of Promoter Recognition Specificity of Stress Response Sigma Factors SigD and SigH in Corynebacterium glutamicum ATCC 13032. FRONTIERS IN MICROBIOLOGY. 2019;9: 3287.
Dostalova, H., Busche, T., Holatko, J., Rucka, L., Stepanek, V., Barvik, I., Nesvera, J., et al. (2019). Overlap of Promoter Recognition Specificity of Stress Response Sigma Factors SigD and SigH in Corynebacterium glutamicum ATCC 13032. FRONTIERS IN MICROBIOLOGY, 9, 3287. doi:10.3389/fmicb.2018.03287
Dostalova, H., Busche, T., Holatko, J., Rucka, L., Stepanek, V., Barvik, I., Nesvera, J., Kalinowski, J., and Patek, M. (2019). Overlap of Promoter Recognition Specificity of Stress Response Sigma Factors SigD and SigH in Corynebacterium glutamicum ATCC 13032. FRONTIERS IN MICROBIOLOGY 9:3287.
Dostalova, H., et al., 2019. Overlap of Promoter Recognition Specificity of Stress Response Sigma Factors SigD and SigH in Corynebacterium glutamicum ATCC 13032. FRONTIERS IN MICROBIOLOGY, 9: 3287.
H. Dostalova, et al., “Overlap of Promoter Recognition Specificity of Stress Response Sigma Factors SigD and SigH in Corynebacterium glutamicum ATCC 13032”, FRONTIERS IN MICROBIOLOGY, vol. 9, 2019, : 3287.
Dostalova, H., Busche, T., Holatko, J., Rucka, L., Stepanek, V., Barvik, I., Nesvera, J., Kalinowski, J., Patek, M.: Overlap of Promoter Recognition Specificity of Stress Response Sigma Factors SigD and SigH in Corynebacterium glutamicum ATCC 13032. FRONTIERS IN MICROBIOLOGY. 9, : 3287 (2019).
Dostalova, Hana, Busche, Tobias, Holatko, Jiri, Rucka, Lenka, Stepanek, Vaclav, Barvik, Ivan, Nesvera, Jan, Kalinowski, Jörn, and Patek, Miroslav. “Overlap of Promoter Recognition Specificity of Stress Response Sigma Factors SigD and SigH in Corynebacterium glutamicum ATCC 13032”. FRONTIERS IN MICROBIOLOGY 9 (2019): 3287.

53 References

Daten bereitgestellt von Europe PubMed Central.

Environmentally induced foregut remodeling by PHA-4/FoxA and DAF-12/NHR.
Ao W, Gaudet J, Kent WJ, Muttumu S, Mango SE., Science 305(5691), 2004
PMID: 15375261
Functional modules of sigma factor regulons guarantee adaptability and evolvability.
Binder SC, Eckweiler D, Schulz S, Bielecka A, Nicolai T, Franke R, Haussler S, Meyer-Hermann M., Sci Rep 6(), 2016
PMID: 26915971
Structural basis for -10 promoter element melting by environmentally induced sigma factors.
Campagne S, Marsh ME, Capitani G, Vorholt JA, Allain FH., Nat. Struct. Mol. Biol. 21(3), 2014
PMID: 24531660
Transcriptomic and phenotypic analyses identify coregulated, overlapping regulons among PrfA, CtsR, HrcA, and the alternative sigma factors sigmaB, sigmaC, sigmaH, and sigmaL in Listeria monocytogenes.
Chaturongakul S, Raengpradub S, Palmer ME, Bergholz TM, Orsi RH, Hu Y, Ollinger J, Wiedmann M, Boor KJ., Appl. Environ. Microbiol. 77(1), 2010
PMID: 21037293
Global Transcriptomic Analysis of the Response of Corynebacterium glutamicum to Vanillin.
Chen C, Pan J, Yang X, Guo C, Ding W, Si M, Zhang Y, Shen X, Wang Y., PLoS ONE 11(10), 2016
PMID: 27760214
Global transcriptomic analysis of the response of Corynebacterium glutamicum to ferulic acid.
Chen C, Pan J, Yang X, Xiao H, Zhang Y, Si M, Shen X, Wang Y., Arch. Microbiol. 199(2), 2016
PMID: 27766354
Transcriptional control of the phenol hydroxylase gene phe of Corynebacterium glutamicum by the AraC-type regulator PheR.
Chen C, Zhang Y, Xu L, Zhu K, Feng Y, Pan J, Si M, Zhang L, Shen X., Microbiol. Res. 209(), 2018
PMID: 29580618
Genome-scale reconstruction of the sigma factor network in Escherichia coli: topology and functional states.
Cho BK, Kim D, Knight EM, Zengler K, Palsson BO., BMC Biol. 12(), 2014
PMID: 24461193
WebLogo: a sequence logo generator.
Crooks GE, Hon G, Chandonia JM, Brenner SE., Genome Res. 14(6), 2004
PMID: 15173120
Posttranslational regulation of Mycobacterium tuberculosis extracytoplasmic-function sigma factor sigma L and roles in virulence and in global regulation of gene expression.
Dainese E, Rodrigue S, Delogu G, Provvedi R, Laflamme L, Brzezinski R, Fadda G, Smith I, Gaudreau L, Palu G, Manganelli R., Infect. Immun. 74(4), 2006
PMID: 16552079
Protein oxidation implicated as the primary determinant of bacterial radioresistance.
Daly MJ, Gaidamakova EK, Matrosova VY, Vasilenko A, Zhai M, Leapman RD, Lai B, Ravel B, Li SM, Kemner KM, Fredrickson JK., PLoS Biol. 5(4), 2007
PMID: 17373858
Mechanisms of action of antibacterial biocides.
Denyer S.., 1995
Assignment of sigma factors of RNA polymerase to promoters in Corynebacterium glutamicum.
Dostalova H, Holatko J, Busche T, Rucka L, Rapoport A, Halada P, Nesvera J, Kalinowski J, Patek M., AMB Express 7(1), 2017
PMID: 28651382

Green M., Sambrook J.., 2012
Multiple sigma subunits and the partitioning of bacterial transcription space.
Gruber TM, Gross CA., Annu. Rev. Microbiol. 57(), 2003
PMID: 14527287
Techniques for transformation of E. coli
Hanahan D.., 1985
ReadXplorer--visualization and analysis of mapped sequences.
Hilker R, Stadermann KB, Doppmeier D, Kalinowski J, Stoye J, Straube J, Winnebald J, Goesmann A., Bioinformatics 30(16), 2014
PMID: 24790157
ReadXplorer 2-detailed read mapping analysis and visualization from one single source.
Hilker R, Stadermann KB, Schwengers O, Anisiforov E, Jaenicke S, Weisshaar B, Zimmermann T, Goesmann A., Bioinformatics 32(24), 2016
PMID: 27540267
Construction of in vitro transcription system for Corynebacterium glutamicum and its use in the recognition of promoters of different classes.
Holatko J, Silar R, Rabatinova A, Sanderova H, Halada P, Nesvera J, Krasny L, Patek M., Appl. Microbiol. Biotechnol. 96(2), 2012
PMID: 22885668
Cell envelope stress response in Gram-positive bacteria.
Jordan S, Hutchings MI, Mascher T., FEMS Microbiol. Rev. 32(1), 2008
PMID: 18173394
The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins.
Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Kramer R, Linke B, McHardy AC, Meyer F, Mockel B, Pfefferle W, Puhler A, Rey DA, Ruckert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A., J. Biotechnol. 104(1-3), 2003
PMID: 12948626
Plasmid vectors for testing in vivo promoter activities in Corynebacterium glutamicum and Rhodococcus erythropolis.
Knoppova M, Phensaijai M, Vesely M, Zemanova M, Nesvera J, Patek M., Curr. Microbiol. 55(3), 2007
PMID: 17657537
RNAseq analysis of α-proteobacterium Gluconobacter oxydans 621H.
Kranz A, Busche T, Vogel A, Usadel B, Kalinowski J, Bott M, Polen T., BMC Genomics 19(1), 2018
PMID: 29304737
Inferring gene function from evolutionary change in signatures of translation efficiency.
Krisko A, Copic T, Gabaldon T, Lehner B, Supek F., Genome Biol. 15(3), 2014
PMID: 24580753
Fast gapped-read alignment with Bowtie 2.
Langmead B, Salzberg SL., Nat. Methods 9(4), 2012
PMID: 22388286
Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.
Love MI, Huber W, Anders S., Genome Biol. 15(12), 2014
PMID: 25516281
Sigma factors and promoters in Corynebacterium glutamicum.
Patek M, Nesvera J., J. Biotechnol. 154(2-3), 2011
PMID: 21277915
Comprehensive analysis of the Corynebacterium glutamicum transcriptome using an improved RNAseq technique.
Pfeifer-Sancar K, Mentz A, Ruckert C, Kalinowski J., BMC Genomics 14(), 2013
PMID: 24341750
E.coli Fis protein activates ribosomal RNA transcription in vitro and in vivo.
Ross W, Thompson JF, Newlands JT, Gourse RL., EMBO J. 9(11), 1990
PMID: 2209559
An overview of the amber biomolecular simulation package.
Salomon-Ferrer R., Case D., Walker R.., 2013
Elucidation of sigma factor-associated networks in Pseudomonas aeruginosa reveals a modular architecture with limited and function-specific crosstalk.
Schulz S, Eckweiler D, Bielecka A, Nicolai T, Franke R, Dotsch A, Hornischer K, Bruchmann S, Duvel J, Haussler S., PLoS Pathog. 11(3), 2015
PMID: 25780925
Multiple-omic data analysis of Klebsiella pneumoniae MGH 78578 reveals its transcriptional architecture and regulatory features.
Seo JH, Hong JS, Kim D, Cho BK, Huang TW, Tsai SF, Palsson BO, Charusanti P., BMC Genomics 13(), 2012
PMID: 23194155
Use of In Vitro Transcription System for Analysis of Corynebacterium glutamicum Promoters Recognized by Two Sigma Factors.
Silar R, Holatko J, Rucka L, Rapoport A, Dostalova H, Kaderabkova P, Nesvera J, Patek M., Curr. Microbiol. 73(3), 2016
PMID: 27270733
Physiological roles of sigma factor SigD in Corynebacterium glutamicum.
Taniguchi H, Busche T, Patschkowski T, Niehaus K, Patek M, Kalinowski J, Wendisch VF., BMC Microbiol. 17(1), 2017
PMID: 28701150
Regulons of global transcription factors in Corynebacterium glutamicum.
Toyoda K, Inui M., Appl. Microbiol. Biotechnol. 100(1), 2016
PMID: 26496920
SWISS-MODEL: homology modelling of protein structures and complexes.
Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TAP, Rempfer C, Bordoli L, Lepore R, Schwede T., Nucleic Acids Res. 46(W1), 2018
PMID: 29788355

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 30687273
PubMed | Europe PMC

Suchen in

Google Scholar