Reactive Oxygen Species and the Redox-Regulatory Network in Cold Stress Acclimation
Dreyer A, Dietz K-J (2018)
Antioxidants 7(11): 169.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
antioxidants-07-00169.dietz.pdf
704.38 KB
Autor*in
Abstract / Bemerkung
Cold temperatures restrict plant growth, geographical extension of plant species, and agricultural practices. This review deals with cold stress above freezing temperatures often defined as chilling stress. It focuses on the redox regulatory network of the cell under cold temperature conditions. Reactive oxygen species (ROS) function as the final electron sink in this network which consists of redox input elements, transmitters, targets, and sensors. Following an introduction to the critical network components which include nicotinamide adenine dinucleotide phosphate (NADPH)-dependent thioredoxin reductases, thioredoxins, and peroxiredoxins, typical laboratory experiments for cold stress investigations will be described. Short term transcriptome and metabolome analyses allow for dissecting the early responses of network components and complement the vast data sets dealing with changes in the antioxidant system and ROS. This review gives examples of how such information may be integrated to advance our knowledge on the response and function of the redox regulatory network in cold stress acclimation. It will be exemplarily shown that targeting the redox network might be beneficial and supportive to improve cold stress acclimation and plant yield in cold climate. View Full-Text
Stichworte
chilling stress;
cold temperature;
posttranslational modification;
regulation;
ROS;
thiol redox network;
thioredoxin
Erscheinungsjahr
2018
Zeitschriftentitel
Antioxidants
Band
7
Ausgabe
11
Art.-Nr.
169
Urheberrecht / Lizenzen
ISSN
2076-3921
eISSN
2076-3921
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Deutsche Forschungsgemeinschaft und die Universität Bielefeld gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2932549
Zitieren
Dreyer A, Dietz K-J. Reactive Oxygen Species and the Redox-Regulatory Network in Cold Stress Acclimation. Antioxidants. 2018;7(11): 169.
Dreyer, A., & Dietz, K. - J. (2018). Reactive Oxygen Species and the Redox-Regulatory Network in Cold Stress Acclimation. Antioxidants, 7(11), 169. doi:10.3390/antiox7110169
Dreyer, Anna, and Dietz, Karl-Josef. 2018. “Reactive Oxygen Species and the Redox-Regulatory Network in Cold Stress Acclimation”. Antioxidants 7 (11): 169.
Dreyer, A., and Dietz, K. - J. (2018). Reactive Oxygen Species and the Redox-Regulatory Network in Cold Stress Acclimation. Antioxidants 7:169.
Dreyer, A., & Dietz, K.-J., 2018. Reactive Oxygen Species and the Redox-Regulatory Network in Cold Stress Acclimation. Antioxidants, 7(11): 169.
A. Dreyer and K.-J. Dietz, “Reactive Oxygen Species and the Redox-Regulatory Network in Cold Stress Acclimation”, Antioxidants, vol. 7, 2018, : 169.
Dreyer, A., Dietz, K.-J.: Reactive Oxygen Species and the Redox-Regulatory Network in Cold Stress Acclimation. Antioxidants. 7, : 169 (2018).
Dreyer, Anna, and Dietz, Karl-Josef. “Reactive Oxygen Species and the Redox-Regulatory Network in Cold Stress Acclimation”. Antioxidants 7.11 (2018): 169.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Name
antioxidants-07-00169.dietz.pdf
704.38 KB
Access Level
Open Access
Zuletzt Hochgeladen
2019-09-06T09:19:04Z
MD5 Prüfsumme
e33e0c35b84d054058b2c47eaf3a41e2
Daten bereitgestellt von European Bioinformatics Institute (EBI)
2 Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
Thioredoxin and Glutaredoxin Systems Antioxidants Special Issue.
Jacquot JP, Zaffagnini M., Antioxidants (Basel) 8(3), 2019
PMID: 30889816
Jacquot JP, Zaffagnini M., Antioxidants (Basel) 8(3), 2019
PMID: 30889816
On the Origin and Fate of Reactive Oxygen Species in Plant Cell Compartments.
Janků M, Luhová L, Petřivalský M., Antioxidants (Basel) 8(4), 2019
PMID: 30999668
Janků M, Luhová L, Petřivalský M., Antioxidants (Basel) 8(4), 2019
PMID: 30999668
94 References
Daten bereitgestellt von Europe PubMed Central.
Genetic basis of photosynthetic responses to cold in two locally adapted populations of Arabidopsis thaliana.
Oakley CG, Savage L, Lotz S, Larson GR, Thomashow MF, Kramer DM, Schemske DW., J. Exp. Bot. 69(3), 2018
PMID: 29300935
Oakley CG, Savage L, Lotz S, Larson GR, Thomashow MF, Kramer DM, Schemske DW., J. Exp. Bot. 69(3), 2018
PMID: 29300935
PLANT COLD ACCLIMATION: Freezing Tolerance Genes and Regulatory Mechanisms.
Thomashow MF., Annu. Rev. Plant Physiol. Plant Mol. Biol. 50(), 1999
PMID: 15012220
Thomashow MF., Annu. Rev. Plant Physiol. Plant Mol. Biol. 50(), 1999
PMID: 15012220
Beyond the Lipid Hypothesis
Hayward S.A.L., Murray P.A., Gracey A.Y., Cossins A.R.., 2007
Hayward S.A.L., Murray P.A., Gracey A.Y., Cossins A.R.., 2007
Cloning and functional characterization of SAD genes in potato.
Li F, Bian CS, Xu JF, Pang WF, Liu J, Duan SG, Lei ZG, Jiwan P, Jin LP., PLoS ONE 10(3), 2015
PMID: 25825911
Li F, Bian CS, Xu JF, Pang WF, Liu J, Duan SG, Lei ZG, Jiwan P, Jin LP., PLoS ONE 10(3), 2015
PMID: 25825911
Combined action of antioxidant defense system and osmolytes in chilling shock-induced chilling tolerance in Jatropha curcas seedlings
Li Z.-G., Yuan L.-X., Wang Q.-L., Ding Z.-L., Dong C.-Y.., 2013
Li Z.-G., Yuan L.-X., Wang Q.-L., Ding Z.-L., Dong C.-Y.., 2013
Natural Variation of Cold Deacclimation Correlates with Variation of Cold-Acclimation of the Plastid Antioxidant System in Arabidopsis thaliana Accessions.
Juszczak I, Cvetkovic J, Zuther E, Hincha DK, Baier M., Front Plant Sci 7(), 2016
PMID: 27014325
Juszczak I, Cvetkovic J, Zuther E, Hincha DK, Baier M., Front Plant Sci 7(), 2016
PMID: 27014325
Cold priming drives the sub-cellular antioxidant systems to protect photosynthetic electron transport against subsequent low temperature stress in winter wheat.
Li X, Cai J, Liu F, Dai T, Cao W, Jiang D., Plant Physiol. Biochem. 82(), 2014
PMID: 24887010
Li X, Cai J, Liu F, Dai T, Cao W, Jiang D., Plant Physiol. Biochem. 82(), 2014
PMID: 24887010
The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses.
Kilian J, Whitehead D, Horak J, Wanke D, Weinl S, Batistic O, D'Angelo C, Bornberg-Bauer E, Kudla J, Harter K., Plant J. 50(2), 2007
PMID: 17376166
Kilian J, Whitehead D, Horak J, Wanke D, Weinl S, Batistic O, D'Angelo C, Bornberg-Bauer E, Kudla J, Harter K., Plant J. 50(2), 2007
PMID: 17376166
Cold stress induces biochemical changes, fatty acid profile, antioxidant system and gene expression in Capsella bursa pastoris L.
Wani M.A., Jan N., Qazi H.A., Andrabi K.I., John R.., 2018
Wani M.A., Jan N., Qazi H.A., Andrabi K.I., John R.., 2018
Cold stress modulates osmolytes and antioxidant system in Calendula officinalis
Jan N., Majeed U., Andrabi K.I., John R.., 2018
Jan N., Majeed U., Andrabi K.I., John R.., 2018
Antioxidant response to cold stress in two oil plants of the genus Jatropha
Spanò C., Bottega S., Ruffini M., Pedranzani H.E.., 2017
Spanò C., Bottega S., Ruffini M., Pedranzani H.E.., 2017
Effects of Melatonin on Anti-oxidative Systems and Photosystem II in Cold-Stressed Rice Seedlings.
Han QH, Huang B, Ding CB, Zhang ZW, Chen YE, Hu C, Zhou LJ, Huang Y, Liao JQ, Yuan S, Yuan M., Front Plant Sci 8(), 2017
PMID: 28553310
Han QH, Huang B, Ding CB, Zhang ZW, Chen YE, Hu C, Zhou LJ, Huang Y, Liao JQ, Yuan S, Yuan M., Front Plant Sci 8(), 2017
PMID: 28553310
Genetic architecture of photosynthesis in Sorghum bicolor under non-stress and cold stress conditions.
Ortiz D, Hu J, Salas Fernandez MG., J. Exp. Bot. 68(16), 2017
PMID: 28981780
Ortiz D, Hu J, Salas Fernandez MG., J. Exp. Bot. 68(16), 2017
PMID: 28981780
Redox signal integration: from stimulus to networks and genes
Dietz KJ., Physiol Plant 133(3), 2008
PMID: IND44069752
Dietz KJ., Physiol Plant 133(3), 2008
PMID: IND44069752
The Path to Thioredoxin and Redox Regulation in Chloroplasts.
Buchanan BB., Annu Rev Plant Biol 67(), 2016
PMID: 27128465
Buchanan BB., Annu Rev Plant Biol 67(), 2016
PMID: 27128465
Inactivation of thioredoxin reductases reveals a complex interplay between thioredoxin and glutathione pathways in Arabidopsis development.
Reichheld JP, Khafif M, Riondet C, Droux M, Bonnard G, Meyer Y., Plant Cell 19(6), 2007
PMID: 17586656
Reichheld JP, Khafif M, Riondet C, Droux M, Bonnard G, Meyer Y., Plant Cell 19(6), 2007
PMID: 17586656
A novel NADPH thioredoxin reductase, localized in the chloroplast, which deficiency causes hypersensitivity to abiotic stress in Arabidopsis thaliana.
Serrato AJ, Perez-Ruiz JM, Spinola MC, Cejudo FJ., J. Biol. Chem. 279(42), 2004
PMID: 15292215
Serrato AJ, Perez-Ruiz JM, Spinola MC, Cejudo FJ., J. Biol. Chem. 279(42), 2004
PMID: 15292215
Characterization of Arabidopsis Mutants for the Variable Subunit of Ferredoxin:thioredoxin Reductase.
Keryer E, Collin V, Lavergne D, Lemaire S, Issakidis-Bourguet E., Photosyn. Res. 79(3), 2004
PMID: 16328792
Keryer E, Collin V, Lavergne D, Lemaire S, Issakidis-Bourguet E., Photosyn. Res. 79(3), 2004
PMID: 16328792
Chloroplastic thioredoxin m functions as a major regulator of Calvin cycle enzymes during photosynthesis in vivo.
Okegawa Y, Motohashi K., Plant J. 84(5), 2015
PMID: 26468055
Okegawa Y, Motohashi K., Plant J. 84(5), 2015
PMID: 26468055
The impact of thiol peroxidases on redox regulation.
Flohe L., Free Radic. Res. 50(2), 2015
PMID: 26291534
Flohe L., Free Radic. Res. 50(2), 2015
PMID: 26291534
Thiol-Based Peroxidases and Ascorbate Peroxidases: Why Plants Rely on Multiple Peroxidase Systems in the Photosynthesizing Chloroplast?
Dietz KJ., Mol. Cells 39(1), 2016
PMID: 26810073
Dietz KJ., Mol. Cells 39(1), 2016
PMID: 26810073
The chloroplast 2-cysteine peroxiredoxin functions as thioredoxin oxidase in redox regulation of chloroplast metabolism.
Vaseghi MJ, Chibani K, Telman W, Liebthal MF, Gerken M, Schnitzer H, Mueller SM, Dietz KJ., Elife 7(), 2018
PMID: 30311601
Vaseghi MJ, Chibani K, Telman W, Liebthal MF, Gerken M, Schnitzer H, Mueller SM, Dietz KJ., Elife 7(), 2018
PMID: 30311601
Tuning of Redox Regulatory Mechanisms, Reactive Oxygen Species and Redox Homeostasis under Salinity Stress.
Hossain MS, Dietz KJ., Front Plant Sci 7(), 2016
PMID: 27242807
Hossain MS, Dietz KJ., Front Plant Sci 7(), 2016
PMID: 27242807
Comparative proteomic and metabolomic analyses reveal mechanisms of improved cold stress tolerance in bermudagrass (Cynodon dactylon (L.) Pers.) by exogenous calcium.
Shi H, Ye T, Zhong B, Liu X, Chan Z., J Integr Plant Biol 56(11), 2014
PMID: 24428341
Shi H, Ye T, Zhong B, Liu X, Chan Z., J Integr Plant Biol 56(11), 2014
PMID: 24428341
THE WATER-WATER CYCLE IN CHLOROPLASTS: Scavenging of Active Oxygens and Dissipation of Excess Photons.
Asada K., Annu. Rev. Plant Physiol. Plant Mol. Biol. 50(), 1999
PMID: 15012221
Asada K., Annu. Rev. Plant Physiol. Plant Mol. Biol. 50(), 1999
PMID: 15012221
Understanding oxidative stress and antioxidant functions to enhance photosynthesis.
Foyer CH, Shigeoka S., Plant Physiol. 155(1), 2010
PMID: 21045124
Foyer CH, Shigeoka S., Plant Physiol. 155(1), 2010
PMID: 21045124
Redox and Reactive Oxygen Species Network in Acclimation for Salinity Tolerance in Sugar Beet.
Hossain MS, ElSayed AI, Moore M, Dietz KJ., J. Exp. Bot. 68(5), 2017
PMID: 28338762
Hossain MS, ElSayed AI, Moore M, Dietz KJ., J. Exp. Bot. 68(5), 2017
PMID: 28338762
Comparative proteomic analysis provides new insights into chilling stress responses in rice.
Yan SP, Zhang QY, Tang ZC, Su WA, Sun WN., Mol. Cell Proteomics 5(3), 2005
PMID: 16316980
Yan SP, Zhang QY, Tang ZC, Su WA, Sun WN., Mol. Cell Proteomics 5(3), 2005
PMID: 16316980
Acetylsalicylic acid enhance tolerance of Phaseolus vulgaris L. to chilling stress, improving photosynthesis, antioxidants and expression of cold stress responsive genes.
Soliman MH, Alayafi AAM, El Kelish AA, Abu-Elsaoud AM., Bot Stud 59(1), 2018
PMID: 29450670
Soliman MH, Alayafi AAM, El Kelish AA, Abu-Elsaoud AM., Bot Stud 59(1), 2018
PMID: 29450670
Cold stress affects antioxidative response and accumulation of medicinally important withanolides in Withania somnifera (L.) Dunal
Mir B.A., Mir S.A., Khazir J., Tonfack L.B., Cowan D.A., Vyas D., Koul S.., 2015
Mir B.A., Mir S.A., Khazir J., Tonfack L.B., Cowan D.A., Vyas D., Koul S.., 2015
Differential antioxidant responses to cold stress in cell suspension cultures of two subspecies of rice
Wang X., Fang G., Li Y., Ding M., Gong H., Li Y.., 2013
Wang X., Fang G., Li Y., Ding M., Gong H., Li Y.., 2013
Genetic divergence among cold tolerant rices (Oryza sativa L.)
Glaszmann J.C., Kaw R.N., Khush G.S.., 1990
Glaszmann J.C., Kaw R.N., Khush G.S.., 1990
Redox Signaling and CBF-Responsive Pathway Are Involved in Salicylic Acid-Improved Photosynthesis and Growth under Chilling Stress in Watermelon.
Cheng F, Lu J, Gao M, Shi K, Kong Q, Huang Y, Bie Z., Front Plant Sci 7(), 2016
PMID: 27777580
Cheng F, Lu J, Gao M, Shi K, Kong Q, Huang Y, Bie Z., Front Plant Sci 7(), 2016
PMID: 27777580
The function of the chloroplast 2-cysteine peroxiredoxin in peroxide detoxification and its regulation.
Dietz KJ, Horling F, Konig J, Baier M., J. Exp. Bot. 53(372), 2002
PMID: 11997378
Dietz KJ, Horling F, Konig J, Baier M., J. Exp. Bot. 53(372), 2002
PMID: 11997378
Peroxiredoxins in plants and cyanobacteria.
Dietz KJ., Antioxid. Redox Signal. 15(4), 2011
PMID: 21194355
Dietz KJ., Antioxid. Redox Signal. 15(4), 2011
PMID: 21194355
Dual action of the active oxygen species during plant stress responses.
Dat J, Vandenabeele S, Vranova E, Van Montagu M, Inze D, Van Breusegem F., Cell. Mol. Life Sci. 57(5), 2000
PMID: 10892343
Dat J, Vandenabeele S, Vranova E, Van Montagu M, Inze D, Van Breusegem F., Cell. Mol. Life Sci. 57(5), 2000
PMID: 10892343
Superoxide dismutase, catalase and peroxidase activities do not confer protection against oxidative damage in salt-stressed cowpea leaves.
Cavalcanti FR, Oliveira JTA, Martins-Miranda AS, Viegas RA, Silveira JAG., New Phytol. 163(3), 2004
PMID: IND43642176
Cavalcanti FR, Oliveira JTA, Martins-Miranda AS, Viegas RA, Silveira JAG., New Phytol. 163(3), 2004
PMID: IND43642176
Regulation of Genes Encoding Chloroplast Antioxidant Enzymes in Comparison to Regulation of the Extra-plastidic Antioxidant Defense System
Baier M., Pitsch N.T., Mellenthin M., Guo W.., 2010
Baier M., Pitsch N.T., Mellenthin M., Guo W.., 2010
The hydrogen peroxide-sensitive proteome of the chloroplast in vitro and in vivo.
Muthuramalingam M, Matros A, Scheibe R, Mock HP, Dietz KJ., Front Plant Sci 4(), 2013
PMID: 23516120
Muthuramalingam M, Matros A, Scheibe R, Mock HP, Dietz KJ., Front Plant Sci 4(), 2013
PMID: 23516120
Metabolite-Centric Reporter Pathway and Tripartite Network Analysis of Arabidopsis Under Cold Stress.
Koc I, Yuksel I, Caetano-Anolles G., Front Bioeng Biotechnol 6(), 2018
PMID: 30258841
Koc I, Yuksel I, Caetano-Anolles G., Front Bioeng Biotechnol 6(), 2018
PMID: 30258841
Superoxide dismutase in Arabidopsis: an eclectic enzyme family with disparate regulation and protein localization.
Kliebenstein DJ, Monde RA, Last RL., Plant Physiol. 118(2), 1998
PMID: 9765550
Kliebenstein DJ, Monde RA, Last RL., Plant Physiol. 118(2), 1998
PMID: 9765550
Copper chaperone-dependent and -independent activation of three copper-zinc superoxide dismutase homologs localized in different cellular compartments in Arabidopsis.
Huang CH, Kuo WY, Weiss C, Jinn TL., Plant Physiol. 158(2), 2011
PMID: 22186608
Huang CH, Kuo WY, Weiss C, Jinn TL., Plant Physiol. 158(2), 2011
PMID: 22186608
Heat stress- and heat shock transcription factor-dependent expression and activity of ascorbate peroxidase in Arabidopsis.
Panchuk II, Volkov RA, Schoffl F., Plant Physiol. 129(2), 2002
PMID: 12068123
Panchuk II, Volkov RA, Schoffl F., Plant Physiol. 129(2), 2002
PMID: 12068123
Ascorbate Peroxidase
Mittler R., Poulos T.L.., 2007
Mittler R., Poulos T.L.., 2007
Arabidopsis peroxisomes possess functionally redundant membrane and matrix isoforms of monodehydroascorbate reductase.
Lisenbee CS, Lingard MJ, Trelease RN., Plant J. 43(6), 2005
PMID: 16146528
Lisenbee CS, Lingard MJ, Trelease RN., Plant J. 43(6), 2005
PMID: 16146528
The use of multiple transcription starts causes the dual targeting of Arabidopsis putative monodehydroascorbate reductase to both mitochondria and chloroplasts.
Obara K, Sumi K, Fukuda H., Plant Cell Physiol. 43(7), 2002
PMID: 12154132
Obara K, Sumi K, Fukuda H., Plant Cell Physiol. 43(7), 2002
PMID: 12154132
Molecular definition of the ascorbate-glutathione cycle in Arabidopsis mitochondria reveals dual targeting of antioxidant defenses in plants.
Chew O, Whelan J, Millar AH., J. Biol. Chem. 278(47), 2003
PMID: 12954611
Chew O, Whelan J, Millar AH., J. Biol. Chem. 278(47), 2003
PMID: 12954611
In-depth proteome analysis of Arabidopsis leaf peroxisomes combined with in vivo subcellular targeting verification indicates novel metabolic and regulatory functions of peroxisomes.
Reumann S, Quan S, Aung K, Yang P, Manandhar-Shrestha K, Holbrook D, Linka N, Switzenberg R, Wilkerson CG, Weber AP, Olsen LJ, Hu J., Plant Physiol. 150(1), 2009
PMID: 19329564
Reumann S, Quan S, Aung K, Yang P, Manandhar-Shrestha K, Holbrook D, Linka N, Switzenberg R, Wilkerson CG, Weber AP, Olsen LJ, Hu J., Plant Physiol. 150(1), 2009
PMID: 19329564
Functional divergence in the glutathione transferase superfamily in plants. Identification of two classes with putative functions in redox homeostasis in Arabidopsis thaliana.
Dixon DP, Davis BG, Edwards R., J. Biol. Chem. 277(34), 2002
PMID: 12077129
Dixon DP, Davis BG, Edwards R., J. Biol. Chem. 277(34), 2002
PMID: 12077129
Genome-wide analysis of glutathione reductase (GR) genes from rice and Arabidopsis.
Trivedi DK, Gill SS, Yadav S, Tuteja N., Plant Signal Behav 8(2), 2012
PMID: 23221779
Trivedi DK, Gill SS, Yadav S, Tuteja N., Plant Signal Behav 8(2), 2012
PMID: 23221779
Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models.
Mhamdi A, Queval G, Chaouch S, Vanderauwera S, Van Breusegem F, Noctor G., J. Exp. Bot. 61(15), 2010
PMID: 20876333
Mhamdi A, Queval G, Chaouch S, Vanderauwera S, Van Breusegem F, Noctor G., J. Exp. Bot. 61(15), 2010
PMID: 20876333
Glutathione peroxidase genes in Arabidopsis are ubiquitous and regulated by abiotic stresses through diverse signaling pathways.
Rodriguez Milla MA, Maurer A, Rodriguez Huete A, Gustafson JP., Plant J. 36(5), 2003
PMID: 14617062
Rodriguez Milla MA, Maurer A, Rodriguez Huete A, Gustafson JP., Plant J. 36(5), 2003
PMID: 14617062
Superoxide production by plant homologues of the gp91(phox) NADPH oxidase. Modulation of activity by calcium and by tobacco mosaic virus infection.
Sagi M, Fluhr R., Plant Physiol. 126(3), 2001
PMID: 11457979
Sagi M, Fluhr R., Plant Physiol. 126(3), 2001
PMID: 11457979
Experimental analysis of the Arabidopsis mitochondrial proteome highlights signaling and regulatory components, provides assessment of targeting prediction programs, and indicates plant-specific mitochondrial proteins.
Heazlewood JL, Tonti-Filippini JS, Gout AM, Day DA, Whelan J, Millar AH., Plant Cell 16(1), 2003
PMID: 14671022
Heazlewood JL, Tonti-Filippini JS, Gout AM, Day DA, Whelan J, Millar AH., Plant Cell 16(1), 2003
PMID: 14671022
Protein phosphatase 2A (PP2A) regulatory subunit B'γ interacts with cytoplasmic ACONITASE 3 and modulates the abundance of AOX1A and AOX1D in Arabidopsis thaliana.
Konert G, Trotta A, Kouvonen P, Rahikainen M, Durian G, Blokhina O, Fagerstedt K, Muth D, Corthals GL, Kangasjarvi S., New Phytol. 205(3), 2014
PMID: 25307043
Konert G, Trotta A, Kouvonen P, Rahikainen M, Durian G, Blokhina O, Fagerstedt K, Muth D, Corthals GL, Kangasjarvi S., New Phytol. 205(3), 2014
PMID: 25307043
The gene for alternative oxidase-2 (AOX2) from Arabidopsis thaliana consists of five exons unlike other AOX genes and is transcribed at an early stage during germination.
Saish D, Nakazono M, Lee KH, Tsutsumi N, Akita S, Hirai A., Genes Genet. Syst. 76(2), 2001
PMID: 11434463
Saish D, Nakazono M, Lee KH, Tsutsumi N, Akita S, Hirai A., Genes Genet. Syst. 76(2), 2001
PMID: 11434463
Location, expression and orientation of the putative chlororespiratory enzymes, Ndh and IMMUTANS, in higher-plant plastids.
Lennon AM, Prommeenate P, Nixon PJ., Planta 218(2), 2003
PMID: 14504923
Lennon AM, Prommeenate P, Nixon PJ., Planta 218(2), 2003
PMID: 14504923
Seed 1-cysteine peroxiredoxin antioxidants are not involved in dormancy, but contribute to inhibition of germination during stress.
Haslekas C, Viken MK, Grini PE, Nygaard V, Nordgard SH, Meza TJ, Aalen RB., Plant Physiol. 133(3), 2003
PMID: 14526116
Haslekas C, Viken MK, Grini PE, Nygaard V, Nordgard SH, Meza TJ, Aalen RB., Plant Physiol. 133(3), 2003
PMID: 14526116
The plant-specific function of 2-Cys peroxiredoxin-mediated detoxification of peroxides in the redox-hierarchy of photosynthetic electron flux.
Konig J, Baier M, Horling F, Kahmann U, Harris G, Schurmann P, Dietz KJ., Proc. Natl. Acad. Sci. U.S.A. 99(8), 2002
PMID: 11929977
Konig J, Baier M, Horling F, Kahmann U, Harris G, Schurmann P, Dietz KJ., Proc. Natl. Acad. Sci. U.S.A. 99(8), 2002
PMID: 11929977
Peroxiredoxin Q of Arabidopsis thaliana is attached to the thylakoids and functions in context of photosynthesis.
Lamkemeyer P, Laxa M, Collin V, Li W, Finkemeier I, Schottler MA, Holtkamp V, Tognetti VB, Issakidis-Bourguet E, Kandlbinder A, Weis E, Miginiac-Maslow M, Dietz KJ., Plant J. 45(6), 2006
PMID: 16507087
Lamkemeyer P, Laxa M, Collin V, Li W, Finkemeier I, Schottler MA, Holtkamp V, Tognetti VB, Issakidis-Bourguet E, Kandlbinder A, Weis E, Miginiac-Maslow M, Dietz KJ., Plant J. 45(6), 2006
PMID: 16507087
Resemblance and dissemblance of Arabidopsis type II peroxiredoxins: similar sequences for divergent gene expression, protein localization, and activity.
Brehelin C, Meyer EH, de Souris JP, Bonnard G, Meyer Y., Plant Physiol. 132(4), 2003
PMID: 12913160
Brehelin C, Meyer EH, de Souris JP, Bonnard G, Meyer Y., Plant Physiol. 132(4), 2003
PMID: 12913160
The mitochondrial type II peroxiredoxin F is essential for redox homeostasis and root growth of Arabidopsis thaliana under stress.
Finkemeier I, Goodman M, Lamkemeyer P, Kandlbinder A, Sweetlove LJ, Dietz KJ., J. Biol. Chem. 280(13), 2005
PMID: 15632145
Finkemeier I, Goodman M, Lamkemeyer P, Kandlbinder A, Sweetlove LJ, Dietz KJ., J. Biol. Chem. 280(13), 2005
PMID: 15632145
Glutaredoxins and thioredoxins in plants.
Meyer Y, Siala W, Bashandy T, Riondet C, Vignols F, Reichheld JP., Biochim. Biophys. Acta 1783(4), 2007
PMID: 18047840
Meyer Y, Siala W, Bashandy T, Riondet C, Vignols F, Reichheld JP., Biochim. Biophys. Acta 1783(4), 2007
PMID: 18047840
AtNTRB is the major mitochondrial thioredoxin reductase in Arabidopsis thaliana.
Reichheld JP, Meyer E, Khafif M, Bonnard G, Meyer Y., FEBS Lett. 579(2), 2005
PMID: 15642341
Reichheld JP, Meyer E, Khafif M, Bonnard G, Meyer Y., FEBS Lett. 579(2), 2005
PMID: 15642341
A small family of chloroplast atypical thioredoxins.
Dangoor I, Peled-Zehavi H, Levitan A, Pasand O, Danon A., Plant Physiol. 149(3), 2008
PMID: 19109414
Dangoor I, Peled-Zehavi H, Levitan A, Pasand O, Danon A., Plant Physiol. 149(3), 2008
PMID: 19109414
The glutaredoxin family in oxygenic photosynthetic organisms.
Lemaire SD., Photosyn. Res. 79(3), 2004
PMID: 16328797
Lemaire SD., Photosyn. Res. 79(3), 2004
PMID: 16328797
AtGRX4, an Arabidopsis chloroplastic monothiol glutaredoxin, is able to suppress yeast grx5 mutant phenotypes and respond to oxidative stress.
Cheng NH., FEBS Lett. 582(6), 2008
PMID: 18275854
Cheng NH., FEBS Lett. 582(6), 2008
PMID: 18275854
AtGRXcp, an Arabidopsis chloroplastic glutaredoxin, is critical for protection against protein oxidative damage.
Cheng NH, Liu JZ, Brock A, Nelson RS, Hirschi KD., J. Biol. Chem. 281(36), 2006
PMID: 16829529
Cheng NH, Liu JZ, Brock A, Nelson RS, Hirschi KD., J. Biol. Chem. 281(36), 2006
PMID: 16829529
Structural insights into the N-terminal GIY-YIG endonuclease activity of Arabidopsis glutaredoxin AtGRXS16 in chloroplasts.
Liu X, Liu S, Feng Y, Liu JZ, Chen Y, Pham K, Deng H, Hirschi KD, Wang X, Cheng N., Proc. Natl. Acad. Sci. U.S.A. 110(23), 2013
PMID: 23690600
Liu X, Liu S, Feng Y, Liu JZ, Chen Y, Pham K, Deng H, Hirschi KD, Wang X, Cheng N., Proc. Natl. Acad. Sci. U.S.A. 110(23), 2013
PMID: 23690600
Nuclear activity of ROXY1, a glutaredoxin interacting with TGA factors, is required for petal development in Arabidopsis thaliana.
Li S, Lauri A, Ziemann M, Busch A, Bhave M, Zachgo S., Plant Cell 21(2), 2009
PMID: 19218396
Li S, Lauri A, Ziemann M, Busch A, Bhave M, Zachgo S., Plant Cell 21(2), 2009
PMID: 19218396
Arabidopsis basic leucine-zipper transcription factors TGA9 and TGA10 interact with floral glutaredoxins ROXY1 and ROXY2 and are redundantly required for anther development.
Murmu J, Bush MJ, DeLong C, Li S, Xu M, Khan M, Malcolmson C, Fobert PR, Zachgo S, Hepworth SR., Plant Physiol. 154(3), 2010
PMID: 20805327
Murmu J, Bush MJ, DeLong C, Li S, Xu M, Khan M, Malcolmson C, Fobert PR, Zachgo S, Hepworth SR., Plant Physiol. 154(3), 2010
PMID: 20805327
Mechanisms and dynamics in the thiol/disulfide redox regulatory network: transmitters, sensors and targets.
Konig J, Muthuramalingam M, Dietz KJ., Curr. Opin. Plant Biol. 15(3), 2012
PMID: 22226570
Konig J, Muthuramalingam M, Dietz KJ., Curr. Opin. Plant Biol. 15(3), 2012
PMID: 22226570
Thioredoxins and glutaredoxins: unifying elements in redox biology.
Meyer Y, Buchanan BB, Vignols F, Reichheld JP., Annu. Rev. Genet. 43(), 2009
PMID: 19691428
Meyer Y, Buchanan BB, Vignols F, Reichheld JP., Annu. Rev. Genet. 43(), 2009
PMID: 19691428
Simultaneous over-expression of PaSOD and RaAPX in transgenic Arabidopsis thaliana confers cold stress tolerance through increase in vascular lignifications.
Shafi A, Dogra V, Gill T, Ahuja PS, Sreenivasulu Y., PLoS ONE 9(10), 2014
PMID: 25330211
Shafi A, Dogra V, Gill T, Ahuja PS, Sreenivasulu Y., PLoS ONE 9(10), 2014
PMID: 25330211
Global quantification of mammalian gene expression control.
Schwanhausser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M., Nature 473(7347), 2011
PMID: 21593866
Schwanhausser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M., Nature 473(7347), 2011
PMID: 21593866
Reactive oxygen gene network of plants.
Mittler R, Vanderauwera S, Gollery M, Van Breusegem F., Trends Plant Sci. 9(10), 2004
PMID: 15465684
Mittler R, Vanderauwera S, Gollery M, Van Breusegem F., Trends Plant Sci. 9(10), 2004
PMID: 15465684
Reactive oxygen species: metabolism, oxidative stress, and signal transduction.
Apel K, Hirt H., Annu Rev Plant Biol 55(), 2004
PMID: 15377225
Apel K, Hirt H., Annu Rev Plant Biol 55(), 2004
PMID: 15377225
Scavenging of Hydrogen Peroxide in Prokaryotic and Eukaryotic Algae: Acquisition of Ascorbate Peroxidase during the Evolution of Cyanobacteria
Miyake C., Michihata F., Asada K.., 1991
Miyake C., Michihata F., Asada K.., 1991
Natural genetic variation in the expression regulation of the chloroplast antioxidant system among Arabidopsis thaliana accessions
Juszczak I, Rudnik R, Pietzenuk B, Baier M., Physiol Plant 146(1), 2012
PMID: IND44700942
Juszczak I, Rudnik R, Pietzenuk B, Baier M., Physiol Plant 146(1), 2012
PMID: IND44700942
The water-water cycle in leaves is not a major alternative electron sink for dissipation of excess excitation energy when CO(2) assimilation is restricted.
Driever SM, Baker NR., Plant Cell Environ. 34(5), 2011
PMID: 21332508
Driever SM, Baker NR., Plant Cell Environ. 34(5), 2011
PMID: 21332508
Peroxiredoxins and Redox Signaling in Plants.
Liebthal M, Maynard D, Dietz KJ., Antioxid. Redox Signal. 28(7), 2017
PMID: 28594234
Liebthal M, Maynard D, Dietz KJ., Antioxid. Redox Signal. 28(7), 2017
PMID: 28594234
Systemic signaling and acclimation in response to excess excitation energy in Arabidopsis.
Karpinski S, Reynolds H, Karpinska B, Wingsle G, Creissen G, Mullineaux P., Science 284(5414), 1999
PMID: 10213690
Karpinski S, Reynolds H, Karpinska B, Wingsle G, Creissen G, Mullineaux P., Science 284(5414), 1999
PMID: 10213690
Fluorescence as a Tool in Photosynthesis Research: Application in Studies of Photoinhibition, Cold Acclimation and Freezing Stress [and Discussion]
Krause G.H., Somersalo S., Osmond C.B., Briantais J.-M., Schreiber U.., 1989
Krause G.H., Somersalo S., Osmond C.B., Briantais J.-M., Schreiber U.., 1989
Overexpression of thylakoidal ascorbate peroxidase shows enhanced resistance to chilling stress in tomato.
Duan M, Feng HL, Wang LY, Li D, Meng QW., J. Plant Physiol. 169(9), 2012
PMID: 22475501
Duan M, Feng HL, Wang LY, Li D, Meng QW., J. Plant Physiol. 169(9), 2012
PMID: 22475501
Tomato expressing Arabidopsis glutaredoxin gene AtGRXS17 confers tolerance to chilling stress via modulating cold responsive components.
Hu Y, Wu Q, Sprague SA, Park J, Oh M, Rajashekar CB, Koiwa H, Nakata PA, Cheng N, Hirschi KD, White FF, Park S., Hortic Res 2(), 2015
PMID: 26623076
Hu Y, Wu Q, Sprague SA, Park J, Oh M, Rajashekar CB, Koiwa H, Nakata PA, Cheng N, Hirschi KD, White FF, Park S., Hortic Res 2(), 2015
PMID: 26623076
Overexpression of Arabidopsis NADPH-dependent thioredoxin reductase C (AtNTRC) confers freezing and cold shock tolerance to plants.
Moon JC, Lee S, Shin SY, Chae HB, Jung YJ, Jung HS, Lee KO, Lee JR, Lee SY., Biochem. Biophys. Res. Commun. 463(4), 2015
PMID: 26086110
Moon JC, Lee S, Shin SY, Chae HB, Jung YJ, Jung HS, Lee KO, Lee JR, Lee SY., Biochem. Biophys. Res. Commun. 463(4), 2015
PMID: 26086110
Arabidopsis chloroplastic ascorbate peroxidase isoenzymes play a dual role in photoprotection and gene regulation under photooxidative stress.
Maruta T, Tanouchi A, Tamoi M, Yabuta Y, Yoshimura K, Ishikawa T, Shigeoka S., Plant Cell Physiol. 51(2), 2009
PMID: 20007290
Maruta T, Tanouchi A, Tamoi M, Yabuta Y, Yoshimura K, Ishikawa T, Shigeoka S., Plant Cell Physiol. 51(2), 2009
PMID: 20007290
Arabidopsis monothiol glutaredoxin, AtGRXS17, is critical for temperature-dependent postembryonic growth and development via modulating auxin response.
Cheng NH, Liu JZ, Liu X, Wu Q, Thompson SM, Lin J, Chang J, Whitham SA, Park S, Cohen JD, Hirschi KD., J. Biol. Chem. 286(23), 2011
PMID: 21515673
Cheng NH, Liu JZ, Liu X, Wu Q, Thompson SM, Lin J, Chang J, Whitham SA, Park S, Cohen JD, Hirschi KD., J. Biol. Chem. 286(23), 2011
PMID: 21515673
Preparing plants for improved cold tolerance by priming.
Baier M, Bittner A, Prescher A, van Buer J., Plant Cell Environ. 42(3), 2018
PMID: 29974962
Baier M, Bittner A, Prescher A, van Buer J., Plant Cell Environ. 42(3), 2018
PMID: 29974962
Subcellular metabolomics: the choice of method depends on the aim of the study.
Dietz KJ., J. Exp. Bot. 68(21-22), 2017
PMID: 29155967
Dietz KJ., J. Exp. Bot. 68(21-22), 2017
PMID: 29155967
Subcellular reprogramming of metabolism during cold acclimation in Arabidopsis thaliana.
Hoermiller II, Naegele T, Augustin H, Stutz S, Weckwerth W, Heyer AG., Plant Cell Environ. 40(5), 2016
PMID: 27642699
Hoermiller II, Naegele T, Augustin H, Stutz S, Weckwerth W, Heyer AG., Plant Cell Environ. 40(5), 2016
PMID: 27642699
Redox-sensitive GFP in Arabidopsis thaliana is a quantitative biosensor for the redox potential of the cellular glutathione redox buffer.
Meyer AJ, Brach T, Marty L, Kreye S, Rouhier N, Jacquot JP, Hell R., Plant J. 52(5), 2007
PMID: 17892447
Meyer AJ, Brach T, Marty L, Kreye S, Rouhier N, Jacquot JP, Hell R., Plant J. 52(5), 2007
PMID: 17892447
Dissecting the superoxide dismutase-ascorbate-glutathione-pathway in chloroplasts by metabolic modeling. Computer simulations as a step towards flux analysis.
Polle A., Plant Physiol. 126(1), 2001
PMID: 11351106
Polle A., Plant Physiol. 126(1), 2001
PMID: 11351106
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 30469375
PubMed | Europe PMC
Suchen in