Reactive Oxygen Species and the Redox-Regulatory Network in Cold Stress Acclimation

Dreyer A, Dietz K-J (2018)
Antioxidants 7(11): 169.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
OA 704.38 KB
Abstract / Bemerkung
Cold temperatures restrict plant growth, geographical extension of plant species, and agricultural practices. This review deals with cold stress above freezing temperatures often defined as chilling stress. It focuses on the redox regulatory network of the cell under cold temperature conditions. Reactive oxygen species (ROS) function as the final electron sink in this network which consists of redox input elements, transmitters, targets, and sensors. Following an introduction to the critical network components which include nicotinamide adenine dinucleotide phosphate (NADPH)-dependent thioredoxin reductases, thioredoxins, and peroxiredoxins, typical laboratory experiments for cold stress investigations will be described. Short term transcriptome and metabolome analyses allow for dissecting the early responses of network components and complement the vast data sets dealing with changes in the antioxidant system and ROS. This review gives examples of how such information may be integrated to advance our knowledge on the response and function of the redox regulatory network in cold stress acclimation. It will be exemplarily shown that targeting the redox network might be beneficial and supportive to improve cold stress acclimation and plant yield in cold climate. View Full-Text
chilling stress; cold temperature; posttranslational modification; regulation; ROS; thiol redox network; thioredoxin
Open-Access-Publikationskosten wurden durch die Deutsche Forschungsgemeinschaft und die Universität Bielefeld gefördert.
Page URI


Dreyer A, Dietz K-J. Reactive Oxygen Species and the Redox-Regulatory Network in Cold Stress Acclimation. Antioxidants. 2018;7(11): 169.
Dreyer, A., & Dietz, K. - J. (2018). Reactive Oxygen Species and the Redox-Regulatory Network in Cold Stress Acclimation. Antioxidants, 7(11), 169. doi:10.3390/antiox7110169
Dreyer, Anna, and Dietz, Karl-Josef. 2018. “Reactive Oxygen Species and the Redox-Regulatory Network in Cold Stress Acclimation”. Antioxidants 7 (11): 169.
Dreyer, A., and Dietz, K. - J. (2018). Reactive Oxygen Species and the Redox-Regulatory Network in Cold Stress Acclimation. Antioxidants 7:169.
Dreyer, A., & Dietz, K.-J., 2018. Reactive Oxygen Species and the Redox-Regulatory Network in Cold Stress Acclimation. Antioxidants, 7(11): 169.
A. Dreyer and K.-J. Dietz, “Reactive Oxygen Species and the Redox-Regulatory Network in Cold Stress Acclimation”, Antioxidants, vol. 7, 2018, : 169.
Dreyer, A., Dietz, K.-J.: Reactive Oxygen Species and the Redox-Regulatory Network in Cold Stress Acclimation. Antioxidants. 7, : 169 (2018).
Dreyer, Anna, and Dietz, Karl-Josef. “Reactive Oxygen Species and the Redox-Regulatory Network in Cold Stress Acclimation”. Antioxidants 7.11 (2018): 169.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Access Level
OA Open Access
Zuletzt Hochgeladen
MD5 Prüfsumme

2 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Thioredoxin and Glutaredoxin Systems Antioxidants Special Issue.
Jacquot JP, Zaffagnini M., Antioxidants (Basel) 8(3), 2019
PMID: 30889816
On the Origin and Fate of Reactive Oxygen Species in Plant Cell Compartments.
Janků M, Luhová L, Petřivalský M., Antioxidants (Basel) 8(4), 2019
PMID: 30999668

94 References

Daten bereitgestellt von Europe PubMed Central.

Genetic basis of photosynthetic responses to cold in two locally adapted populations of Arabidopsis thaliana.
Oakley CG, Savage L, Lotz S, Larson GR, Thomashow MF, Kramer DM, Schemske DW., J. Exp. Bot. 69(3), 2018
PMID: 29300935
PLANT COLD ACCLIMATION: Freezing Tolerance Genes and Regulatory Mechanisms.
Thomashow MF., Annu. Rev. Plant Physiol. Plant Mol. Biol. 50(), 1999
PMID: 15012220
Beyond the Lipid Hypothesis
Hayward S.A.L., Murray P.A., Gracey A.Y., Cossins A.R.., 2007
Cloning and functional characterization of SAD genes in potato.
Li F, Bian CS, Xu JF, Pang WF, Liu J, Duan SG, Lei ZG, Jiwan P, Jin LP., PLoS ONE 10(3), 2015
PMID: 25825911
Combined action of antioxidant defense system and osmolytes in chilling shock-induced chilling tolerance in Jatropha curcas seedlings
Li Z.-G., Yuan L.-X., Wang Q.-L., Ding Z.-L., Dong C.-Y.., 2013
The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses.
Kilian J, Whitehead D, Horak J, Wanke D, Weinl S, Batistic O, D'Angelo C, Bornberg-Bauer E, Kudla J, Harter K., Plant J. 50(2), 2007
PMID: 17376166
Cold stress induces biochemical changes, fatty acid profile, antioxidant system and gene expression in Capsella bursa pastoris L.
Wani M.A., Jan N., Qazi H.A., Andrabi K.I., John R.., 2018
Cold stress modulates osmolytes and antioxidant system in Calendula officinalis
Jan N., Majeed U., Andrabi K.I., John R.., 2018
Antioxidant response to cold stress in two oil plants of the genus Jatropha
Spanò C., Bottega S., Ruffini M., Pedranzani H.E.., 2017
Effects of Melatonin on Anti-oxidative Systems and Photosystem II in Cold-Stressed Rice Seedlings.
Han QH, Huang B, Ding CB, Zhang ZW, Chen YE, Hu C, Zhou LJ, Huang Y, Liao JQ, Yuan S, Yuan M., Front Plant Sci 8(), 2017
PMID: 28553310
The Path to Thioredoxin and Redox Regulation in Chloroplasts.
Buchanan BB., Annu Rev Plant Biol 67(), 2016
PMID: 27128465
Characterization of Arabidopsis Mutants for the Variable Subunit of Ferredoxin:thioredoxin Reductase.
Keryer E, Collin V, Lavergne D, Lemaire S, Issakidis-Bourguet E., Photosyn. Res. 79(3), 2004
PMID: 16328792
The Calvin cycle revisited.
Raines CA., Photosyn. Res. 75(1), 2003
PMID: 16245089
The impact of thiol peroxidases on redox regulation.
Flohe L., Free Radic. Res. 50(2), 2015
PMID: 26291534
The chloroplast 2-cysteine peroxiredoxin functions as thioredoxin oxidase in redox regulation of chloroplast metabolism.
Vaseghi MJ, Chibani K, Telman W, Liebthal MF, Gerken M, Schnitzer H, Mueller SM, Dietz KJ., Elife 7(), 2018
PMID: 30311601
Redox and Reactive Oxygen Species Network in Acclimation for Salinity Tolerance in Sugar Beet.
Hossain MS, ElSayed AI, Moore M, Dietz KJ., J. Exp. Bot. 68(5), 2017
PMID: 28338762
Comparative proteomic analysis provides new insights into chilling stress responses in rice.
Yan SP, Zhang QY, Tang ZC, Su WA, Sun WN., Mol. Cell Proteomics 5(3), 2005
PMID: 16316980
Cold stress affects antioxidative response and accumulation of medicinally important withanolides in Withania somnifera (L.) Dunal
Mir B.A., Mir S.A., Khazir J., Tonfack L.B., Cowan D.A., Vyas D., Koul S.., 2015
Differential antioxidant responses to cold stress in cell suspension cultures of two subspecies of rice
Wang X., Fang G., Li Y., Ding M., Gong H., Li Y.., 2013
Genetic divergence among cold tolerant rices (Oryza sativa L.)
Glaszmann J.C., Kaw R.N., Khush G.S.., 1990
The function of the chloroplast 2-cysteine peroxiredoxin in peroxide detoxification and its regulation.
Dietz KJ, Horling F, Konig J, Baier M., J. Exp. Bot. 53(372), 2002
PMID: 11997378
Peroxiredoxins in plants and cyanobacteria.
Dietz KJ., Antioxid. Redox Signal. 15(4), 2011
PMID: 21194355
Dual action of the active oxygen species during plant stress responses.
Dat J, Vandenabeele S, Vranova E, Van Montagu M, Inze D, Van Breusegem F., Cell. Mol. Life Sci. 57(5), 2000
PMID: 10892343
Superoxide dismutase, catalase and peroxidase activities do not confer protection against oxidative damage in salt-stressed cowpea leaves.
Cavalcanti FR, Oliveira JTA, Martins-Miranda AS, Viegas RA, Silveira JAG., New Phytol. 163(3), 2004
PMID: IND43642176
Regulation of Genes Encoding Chloroplast Antioxidant Enzymes in Comparison to Regulation of the Extra-plastidic Antioxidant Defense System
Baier M., Pitsch N.T., Mellenthin M., Guo W.., 2010
The hydrogen peroxide-sensitive proteome of the chloroplast in vitro and in vivo.
Muthuramalingam M, Matros A, Scheibe R, Mock HP, Dietz KJ., Front Plant Sci 4(), 2013
PMID: 23516120
Metabolite-Centric Reporter Pathway and Tripartite Network Analysis of Arabidopsis Under Cold Stress.
Koc I, Yuksel I, Caetano-Anolles G., Front Bioeng Biotechnol 6(), 2018
PMID: 30258841
Ascorbate Peroxidase
Mittler R., Poulos T.L.., 2007
In-depth proteome analysis of Arabidopsis leaf peroxisomes combined with in vivo subcellular targeting verification indicates novel metabolic and regulatory functions of peroxisomes.
Reumann S, Quan S, Aung K, Yang P, Manandhar-Shrestha K, Holbrook D, Linka N, Switzenberg R, Wilkerson CG, Weber AP, Olsen LJ, Hu J., Plant Physiol. 150(1), 2009
PMID: 19329564
Genome-wide analysis of glutathione reductase (GR) genes from rice and Arabidopsis.
Trivedi DK, Gill SS, Yadav S, Tuteja N., Plant Signal Behav 8(2), 2012
PMID: 23221779
Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models.
Mhamdi A, Queval G, Chaouch S, Vanderauwera S, Van Breusegem F, Noctor G., J. Exp. Bot. 61(15), 2010
PMID: 20876333
Glutathione peroxidase genes in Arabidopsis are ubiquitous and regulated by abiotic stresses through diverse signaling pathways.
Rodriguez Milla MA, Maurer A, Rodriguez Huete A, Gustafson JP., Plant J. 36(5), 2003
PMID: 14617062
Protein phosphatase 2A (PP2A) regulatory subunit B'γ interacts with cytoplasmic ACONITASE 3 and modulates the abundance of AOX1A and AOX1D in Arabidopsis thaliana.
Konert G, Trotta A, Kouvonen P, Rahikainen M, Durian G, Blokhina O, Fagerstedt K, Muth D, Corthals GL, Kangasjarvi S., New Phytol. 205(3), 2014
PMID: 25307043
Seed 1-cysteine peroxiredoxin antioxidants are not involved in dormancy, but contribute to inhibition of germination during stress.
Haslekas C, Viken MK, Grini PE, Nygaard V, Nordgard SH, Meza TJ, Aalen RB., Plant Physiol. 133(3), 2003
PMID: 14526116
The plant-specific function of 2-Cys peroxiredoxin-mediated detoxification of peroxides in the redox-hierarchy of photosynthetic electron flux.
Konig J, Baier M, Horling F, Kahmann U, Harris G, Schurmann P, Dietz KJ., Proc. Natl. Acad. Sci. U.S.A. 99(8), 2002
PMID: 11929977
Peroxiredoxin Q of Arabidopsis thaliana is attached to the thylakoids and functions in context of photosynthesis.
Lamkemeyer P, Laxa M, Collin V, Li W, Finkemeier I, Schottler MA, Holtkamp V, Tognetti VB, Issakidis-Bourguet E, Kandlbinder A, Weis E, Miginiac-Maslow M, Dietz KJ., Plant J. 45(6), 2006
PMID: 16507087
The mitochondrial type II peroxiredoxin F is essential for redox homeostasis and root growth of Arabidopsis thaliana under stress.
Finkemeier I, Goodman M, Lamkemeyer P, Kandlbinder A, Sweetlove LJ, Dietz KJ., J. Biol. Chem. 280(13), 2005
PMID: 15632145
Glutaredoxins and thioredoxins in plants.
Meyer Y, Siala W, Bashandy T, Riondet C, Vignols F, Reichheld JP., Biochim. Biophys. Acta 1783(4), 2007
PMID: 18047840
AtNTRB is the major mitochondrial thioredoxin reductase in Arabidopsis thaliana.
Reichheld JP, Meyer E, Khafif M, Bonnard G, Meyer Y., FEBS Lett. 579(2), 2005
PMID: 15642341
A small family of chloroplast atypical thioredoxins.
Dangoor I, Peled-Zehavi H, Levitan A, Pasand O, Danon A., Plant Physiol. 149(3), 2008
PMID: 19109414
The glutaredoxin family in oxygenic photosynthetic organisms.
Lemaire SD., Photosyn. Res. 79(3), 2004
PMID: 16328797
AtGRXcp, an Arabidopsis chloroplastic glutaredoxin, is critical for protection against protein oxidative damage.
Cheng NH, Liu JZ, Brock A, Nelson RS, Hirschi KD., J. Biol. Chem. 281(36), 2006
PMID: 16829529
Structural insights into the N-terminal GIY-YIG endonuclease activity of Arabidopsis glutaredoxin AtGRXS16 in chloroplasts.
Liu X, Liu S, Feng Y, Liu JZ, Chen Y, Pham K, Deng H, Hirschi KD, Wang X, Cheng N., Proc. Natl. Acad. Sci. U.S.A. 110(23), 2013
PMID: 23690600
Arabidopsis basic leucine-zipper transcription factors TGA9 and TGA10 interact with floral glutaredoxins ROXY1 and ROXY2 and are redundantly required for anther development.
Murmu J, Bush MJ, DeLong C, Li S, Xu M, Khan M, Malcolmson C, Fobert PR, Zachgo S, Hepworth SR., Plant Physiol. 154(3), 2010
PMID: 20805327
Mechanisms and dynamics in the thiol/disulfide redox regulatory network: transmitters, sensors and targets.
Konig J, Muthuramalingam M, Dietz KJ., Curr. Opin. Plant Biol. 15(3), 2012
PMID: 22226570
Thioredoxins and glutaredoxins: unifying elements in redox biology.
Meyer Y, Buchanan BB, Vignols F, Reichheld JP., Annu. Rev. Genet. 43(), 2009
PMID: 19691428
Global quantification of mammalian gene expression control.
Schwanhausser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M., Nature 473(7347), 2011
PMID: 21593866
Reactive oxygen gene network of plants.
Mittler R, Vanderauwera S, Gollery M, Van Breusegem F., Trends Plant Sci. 9(10), 2004
PMID: 15465684
Scavenging of Hydrogen Peroxide in Prokaryotic and Eukaryotic Algae: Acquisition of Ascorbate Peroxidase during the Evolution of Cyanobacteria
Miyake C., Michihata F., Asada K.., 1991
Peroxiredoxins and Redox Signaling in Plants.
Liebthal M, Maynard D, Dietz KJ., Antioxid. Redox Signal. 28(7), 2017
PMID: 28594234
Systemic signaling and acclimation in response to excess excitation energy in Arabidopsis.
Karpinski S, Reynolds H, Karpinska B, Wingsle G, Creissen G, Mullineaux P., Science 284(5414), 1999
PMID: 10213690
Fluorescence as a Tool in Photosynthesis Research: Application in Studies of Photoinhibition, Cold Acclimation and Freezing Stress [and Discussion]
Krause G.H., Somersalo S., Osmond C.B., Briantais J.-M., Schreiber U.., 1989
Overexpression of thylakoidal ascorbate peroxidase shows enhanced resistance to chilling stress in tomato.
Duan M, Feng HL, Wang LY, Li D, Meng QW., J. Plant Physiol. 169(9), 2012
PMID: 22475501
Tomato expressing Arabidopsis glutaredoxin gene AtGRXS17 confers tolerance to chilling stress via modulating cold responsive components.
Hu Y, Wu Q, Sprague SA, Park J, Oh M, Rajashekar CB, Koiwa H, Nakata PA, Cheng N, Hirschi KD, White FF, Park S., Hortic Res 2(), 2015
PMID: 26623076
Overexpression of Arabidopsis NADPH-dependent thioredoxin reductase C (AtNTRC) confers freezing and cold shock tolerance to plants.
Moon JC, Lee S, Shin SY, Chae HB, Jung YJ, Jung HS, Lee KO, Lee JR, Lee SY., Biochem. Biophys. Res. Commun. 463(4), 2015
PMID: 26086110
Arabidopsis chloroplastic ascorbate peroxidase isoenzymes play a dual role in photoprotection and gene regulation under photooxidative stress.
Maruta T, Tanouchi A, Tamoi M, Yabuta Y, Yoshimura K, Ishikawa T, Shigeoka S., Plant Cell Physiol. 51(2), 2009
PMID: 20007290
Arabidopsis monothiol glutaredoxin, AtGRXS17, is critical for temperature-dependent postembryonic growth and development via modulating auxin response.
Cheng NH, Liu JZ, Liu X, Wu Q, Thompson SM, Lin J, Chang J, Whitham SA, Park S, Cohen JD, Hirschi KD., J. Biol. Chem. 286(23), 2011
PMID: 21515673
Preparing plants for improved cold tolerance by priming.
Baier M, Bittner A, Prescher A, van Buer J., Plant Cell Environ. 42(3), 2018
PMID: 29974962
Subcellular reprogramming of metabolism during cold acclimation in Arabidopsis thaliana.
Hoermiller II, Naegele T, Augustin H, Stutz S, Weckwerth W, Heyer AG., Plant Cell Environ. 40(5), 2016
PMID: 27642699
Redox-sensitive GFP in Arabidopsis thaliana is a quantitative biosensor for the redox potential of the cellular glutathione redox buffer.
Meyer AJ, Brach T, Marty L, Kreye S, Rouhier N, Jacquot JP, Hell R., Plant J. 52(5), 2007
PMID: 17892447

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 30469375
PubMed | Europe PMC

Suchen in

Google Scholar