The chloroplast 2-cysteine peroxiredoxin functions as thioredoxin oxidase in redox regulation of chloroplast metabolism

Vaseghi M, Chibani K, Telman W, Liebthal M, Gerken M, Schnitzer H, Müller S, Dietz K-J (2018)
eLife 7: e38194.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Erscheinungsjahr
2018
Zeitschriftentitel
eLife
Band
7
Art.-Nr.
e38194
ISSN
2050-084x
eISSN
2050-084X
Page URI
https://pub.uni-bielefeld.de/record/2932408

Zitieren

Vaseghi M, Chibani K, Telman W, et al. The chloroplast 2-cysteine peroxiredoxin functions as thioredoxin oxidase in redox regulation of chloroplast metabolism. eLife. 2018;7: e38194.
Vaseghi, M., Chibani, K., Telman, W., Liebthal, M., Gerken, M., Schnitzer, H., Müller, S., et al. (2018). The chloroplast 2-cysteine peroxiredoxin functions as thioredoxin oxidase in redox regulation of chloroplast metabolism. eLife, 7, e38194. https://doi.org/10.7554/eLife.38194
Vaseghi, Mohamad, Chibani, Kamel, Telman, Wilena, Liebthal, Michael, Gerken, Melanie, Schnitzer, Helena, Müller, Sara, and Dietz, Karl-Josef. 2018. “The chloroplast 2-cysteine peroxiredoxin functions as thioredoxin oxidase in redox regulation of chloroplast metabolism”. eLife 7: e38194.
Vaseghi, M., Chibani, K., Telman, W., Liebthal, M., Gerken, M., Schnitzer, H., Müller, S., and Dietz, K. - J. (2018). The chloroplast 2-cysteine peroxiredoxin functions as thioredoxin oxidase in redox regulation of chloroplast metabolism. eLife 7:e38194.
Vaseghi, M., et al., 2018. The chloroplast 2-cysteine peroxiredoxin functions as thioredoxin oxidase in redox regulation of chloroplast metabolism. eLife, 7: e38194.
M. Vaseghi, et al., “The chloroplast 2-cysteine peroxiredoxin functions as thioredoxin oxidase in redox regulation of chloroplast metabolism”, eLife, vol. 7, 2018, : e38194.
Vaseghi, M., Chibani, K., Telman, W., Liebthal, M., Gerken, M., Schnitzer, H., Müller, S., Dietz, K.-J.: The chloroplast 2-cysteine peroxiredoxin functions as thioredoxin oxidase in redox regulation of chloroplast metabolism. eLife. 7, : e38194 (2018).
Vaseghi, Mohamad, Chibani, Kamel, Telman, Wilena, Liebthal, Michael, Gerken, Melanie, Schnitzer, Helena, Müller, Sara, and Dietz, Karl-Josef. “The chloroplast 2-cysteine peroxiredoxin functions as thioredoxin oxidase in redox regulation of chloroplast metabolism”. eLife 7 (2018): e38194.

6 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Arabidopsis RCD1 coordinates chloroplast and mitochondrial functions through interaction with ANAC transcription factors.
Shapiguzov A, Vainonen JP, Hunter K, Tossavainen H, Tiwari A, Järvi S, Hellman M, Aarabi F, Alseekh S, Wybouw B, Van Der Kelen K, Nikkanen L, Krasensky-Wrzaczek J, Sipari N, Keinänen M, Tyystjärvi E, Rintamäki E, De Rybel B, Salojärvi J, Van Breusegem F, Fernie AR, Brosché M, Permi P, Aro EM, Wrzaczek M, Kangasjärvi J., Elife 8(), 2019
PMID: 30767893
Chloroplast Redox Regulatory Mechanisms in Plant Adaptation to Light and Darkness.
Cejudo FJ, Ojeda V, Delgado-Requerey V, González M, Pérez-Ruiz JM., Front Plant Sci 10(), 2019
PMID: 31019520
The Role of the Plant Antioxidant System in Drought Tolerance.
Laxa M, Liebthal M, Telman W, Chibani K, Dietz KJ., Antioxidants (Basel) 8(4), 2019
PMID: 30965652
Chloroplast thioredoxin systems dynamically regulate photosynthesis in plants.
Nikkanen L, Rintamäki E., Biochem J 476(7), 2019
PMID: 30988137
Reactive Oxygen Species and the Redox-Regulatory Network in Cold Stress Acclimation.
Dreyer A, Dietz KJ., Antioxidants (Basel) 7(11), 2018
PMID: 30469375
Crystal Structure of Chloroplastic Thioredoxin f2 from Chlamydomonas reinhardtii Reveals Distinct Surface Properties.
Lemaire SD, Tedesco D, Crozet P, Michelet L, Fermani S, Zaffagnini M, Henri J., Antioxidants (Basel) 7(12), 2018
PMID: 30477165

63 References

Daten bereitgestellt von Europe PubMed Central.

The Path to Thioredoxin and Redox Regulation in Chloroplasts.
Buchanan BB., Annu Rev Plant Biol 67(), 2016
PMID: 27128465
Arogenate Dehydratase Isoforms Differentially Regulate Anthocyanin Biosynthesis in Arabidopsis thaliana.
Chen Q, Man C, Li D, Tan H, Xie Y, Huang J., Mol Plant 9(12), 2016
PMID: 27720844
Comparative genomic study of the thioredoxin family in photosynthetic organisms with emphasis on Populus trichocarpa.
Chibani K, Wingsle G, Jacquot JP, Gelhaye E, Rouhier N., Mol Plant 2(2), 2009
PMID: 19825616
The Arabidopsis plastidial thioredoxins: new functions and new insights into specificity.
Collin V, Issakidis-Bourguet E, Marchand C, Hirasawa M, Lancelin JM, Knaff DB, Miginiac-Maslow M., J. Biol. Chem. 278(26), 2003
PMID: 12707279
A small family of chloroplast atypical thioredoxins.
Dangoor I, Peled-Zehavi H, Levitan A, Pasand O, Danon A., Plant Physiol. 149(3), 2008
PMID: 19109414
Rate-limiting factors in leaf photosynthesis. I. carbon fluxes in the calvin cycle
Dietz K-J, Heber U., 1984
The function of peroxiredoxins in plant organelle redox metabolism.
Dietz KJ, Jacob S, Oelze ML, Laxa M, Tognetti V, de Miranda SM, Baier M, Finkemeier I., J. Exp. Bot. 57(8), 2006
PMID: 16606633
Redox- and Reactive Oxygen Species-Dependent Signaling into and out of the Photosynthesizing Chloroplast.
Dietz KJ, Turkan I, Krieger-Liszkay A., Plant Physiol. 171(3), 2016
PMID: 27255485
The impact of thiol peroxidases on redox regulation.
Flohe L., Free Radic. Res. 50(2), 2015
PMID: 26291534
The small protein CP12: a protein linker for supramolecular complex assembly.
Graciet E, Gans P, Wedel N, Lebreton S, Camadro JM, Gontero B., Biochemistry 42(27), 2003
PMID: 12846565
Thiol-based redox switches.
Groitl B, Jakob U., Biochim. Biophys. Acta 1844(8), 2014
PMID: 24657586
Dithiol disulphide exchange in redox regulation of chloroplast enzymes in response to evolutionary and structural constraints
Gutle DD, Arnaud Hecker , Jean-Pierre Jacquot , Ralf Reski , Thomas Roret ., Plant Sci. 255(), 2017
PMID: IND605584866
Multiple strategies to prevent oxidative stress in Arabidopsis plants lacking the malate valve enzyme NADP-malate dehydrogenase.
Hebbelmann I, Selinski J, Wehmeyer C, Goss T, Voss I, Mulo P, Kangasjarvi S, Aro EM, Oelze ML, Dietz KJ, Nunes-Nesi A, Do PT, Fernie AR, Talla SK, Raghavendra AS, Linke V, Scheibe R., J. Exp. Bot. 63(3), 2011
PMID: 22140244
Oxidation-reduction properties of chloroplast thioredoxins, ferredoxin:thioredoxin reductase, and thioredoxin f-regulated enzymes.
Hirasawa M, Schurmann P, Jacquot JP, Manieri W, Jacquot P, Keryer E, Hartman FC, Knaff DB., Biochemistry 38(16), 1999
PMID: 10213627
Oxidation-reduction properties of the regulatory disulfides of sorghum chloroplast nicotinamide adenine dinucleotide phosphate-malate dehydrogenase.
Hirasawa M, Ruelland E, Schepens I, Issakidis-Bourguet E, Miginiac-Maslow M, Knaff DB., Biochemistry 39(12), 2000
PMID: 10727227
Calcium-dependent regulation of photosynthesis.
Hochmal AK, Schulze S, Trompelt K, Hippler M., Biochim. Biophys. Acta 1847(9), 2015
PMID: 25687895
Photosynthetic regulatory protein from rabbit liver is identical with thioredoxin.
Holmgren A, Buchanan BB, Wolosiuk RA., FEBS Lett. 82(2), 1977
PMID: 334570
Divergent light-, ascorbate-, and oxidative stress-dependent regulation of expression of the peroxiredoxin gene family in Arabidopsis.
Horling F, Lamkemeyer P, Konig J, Finkemeier I, Kandlbinder A, Baier M, Dietz KJ., Plant Physiol. 131(1), 2003
PMID: 12529539
Chloroplasts of higher plants synthesize L-phenylalanine via L-arogenate.
Jung E, Zamir LO, Jensen RA., Proc. Natl. Acad. Sci. U.S.A. 83(19), 1986
PMID: 3463961
Small Molecules Govern Thiol Redox Switches.
Knuesting J, Scheibe R., Trends Plant Sci. 23(9), 2018
PMID: 30149854
The plant-specific function of 2-Cys peroxiredoxin-mediated detoxification of peroxides in the redox-hierarchy of photosynthetic electron flux.
Konig J, Baier M, Horling F, Kahmann U, Harris G, Schurmann P, Dietz KJ., Proc. Natl. Acad. Sci. U.S.A. 99(8), 2002
PMID: 11929977
The conformational bases for the two functionalities of 2-cysteine peroxiredoxins as peroxidase and chaperone.
Konig J, Galliardt H, Jutte P, Schaper S, Dittmann L, Dietz KJ., J. Exp. Bot. 64(11), 2013
PMID: 23828546
Thioredoxins and glutaredoxins: unifying elements in redox biology.
Meyer Y, Buchanan BB, Vignols F, Reichheld JP., Annu. Rev. Genet. 43(), 2009
PMID: 19691428
Redox regulation of the Calvin-Benson cycle: something old, something new.
Michelet L, Zaffagnini M, Morisse S, Sparla F, Perez-Perez ME, Francia F, Danon A, Marchand CH, Fermani S, Trost P, Lemaire SD., Front Plant Sci 4(), 2013
PMID: 24324475
Modulation of coupling factor ATPase activity in intact chloroplasts. Reversal of thiol modulation in the dark
Mills JD, Mitchell P., 1982
The role of pH and magnesium concentration in the light activation of chloroplast fructose bisphosphatase
Minot R, Meunier JC, Buc J, Ricard J., 1982
Thioredoxin targets in plants: the first 30 years.
Montrichard F, Alkhalfioui F, Yano H, Vensel WH, Hurkman WJ, Buchanan BB., J Proteomics 72(3), 2008
PMID: 19135183
Identification of thioredoxin targeted proteins using thioredoxin single cysteine mutant-immobilized resin.
Motohashi K, Romano PG, Hisabori T., Methods Mol. Biol. 479(), 2009
PMID: 19083171
The redox-sensitive module of cyclophilin 20-3, 2-cysteine peroxiredoxin and cysteine synthase integrates sulfur metabolism and oxylipin signaling in the high light acclimation response.
Muller SM, Wang S, Telman W, Liebthal M, Schnitzer H, Viehhauser A, Sticht C, Delatorre C, Wirtz M, Hell R, Dietz KJ., Plant J. 91(6), 2017
PMID: 28644561
Plant glutathione peroxidases are functional peroxiredoxins distributed in several subcellular compartments and regulated during biotic and abiotic stresses.
Navrot N, Collin V, Gualberto J, Gelhaye E, Hirasawa M, Rey P, Knaff DB, Issakidis E, Jacquot JP, Rouhier N., Plant Physiol. 142(4), 2006
PMID: 17071643
The oligomeric stromal proteome of Arabidopsis thaliana chloroplasts.
Peltier JB, Cai Y, Sun Q, Zabrouskov V, Giacomelli L, Rudella A, Ytterberg AJ, Rutschow H, van Wijk KJ., Mol. Cell Proteomics 5(1), 2005
PMID: 16207701
NTRC-dependent redox balance of 2-Cys peroxiredoxins is needed for optimal function of the photosynthetic apparatus.
Perez-Ruiz JM, Naranjo B, Ojeda V, Guinea M, Cejudo FJ., Proc. Natl. Acad. Sci. U.S.A. 114(45), 2017
PMID: 29078290

Pilkis SJ, Claus TH, Kountz PD, El-Maghrabi MR., 1987
Energy model and metabolic flux analysis for autotrophic nitrifiers.
Poughon L, Dussap CG, Gros JB., Biotechnol. Bioeng. 72(4), 2001
PMID: 11180062
Regulation of photosynthetic carbon assimilation in spinach leaves after a decrease in irradiance
Prinsley RT, Dietz K-J, Leegood RC., 1986
Functional analysis of the pathways for 2-Cys peroxiredoxin reduction in Arabidopsis thaliana chloroplasts.
Pulido P, Spinola MC, Kirchsteiger K, Guinea M, Pascual MB, Sahrawy M, Sandalio LM, Dietz KJ, Gonzalez M, Cejudo FJ., J. Exp. Bot. 61(14), 2010
PMID: 20616155
New insights into redox control of starch degradation.
Santelia D, Trost P, Sparla F., Curr. Opin. Plant Biol. 25(), 2015
PMID: 25899330
Inactivation of thioredoxin f1 leads to decreased light activation of ADP-glucose pyrophosphorylase and altered diurnal starch turnover in leaves of Arabidopsis plants.
Thormahlen I, Ruber J, von Roepenack-Lahaye E, Ehrlich SM, Massot V, Hummer C, Tezycka J, Issakidis-Bourguet E, Geigenberger P., Plant Cell Environ. 36(1), 2012
PMID: 22646759
Thioredoxins Play a Crucial Role in Dynamic Acclimation of Photosynthesis in Fluctuating Light.
Thormahlen I, Zupok A, Rescher J, Leger J, Weissenberger S, Groysman J, Orwat A, Chatel-Innocenti G, Issakidis-Bourguet E, Armbruster U, Geigenberger P., Mol Plant 10(1), 2016
PMID: 27940305
Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method.
Zhang X, Henriques R, Lin SS, Niu QW, Chua NH., Nat Protoc 1(2), 2006
PMID: 17406292
Material in PUB:
Teil dieser Dissertation
Teil dieser Dissertation
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 30311601
PubMed | Europe PMC

Suchen in

Google Scholar