toaSTR: A web application for forensic STR genotyping by massively parallel sequencing

Ganschow S, Silvery J, Kalinowski J, Tiemann C (2018)
Forensic Science International: Genetics 37: 21-28.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Autor/in
; ; ;
Abstract / Bemerkung
Massively parallel sequencing (MPS) is emerging within the forensic community as a promising technique for high-resolution short tandem repeat (STR) genotyping, discovering both length and sequence polymorphisms. Conversely, the application of MPS to routine casework poses new challenges to the DNA analyst in view of the complex sequence data that is generated with this technology. We developed the web application toaSTR to help forensic experts work with MPS data simply and efficiently. An intuitive graphical user interface guides through the STR genotyping workflow. This versatile software handles data from various popular MPS platforms and supports both commercial and in-house multiplex PCR kits. Users can define locus-specific stutter thresholds and create custom sets of STR markers to be analyzed. toaSTR's innovative sequence-based stutter model predicts and identifies common stutter variants. The algorithm automatically differentiates biological (iso-)alleles from stutter and other artefacts to assist the interpretation of mixed samples. toaSTR features a comprehensive data visualization with interactive diagrams and a dynamic tabular overview of sequence observations. The software provides an interface to biostatistics tools and enables PDF result export in compliance with the sequence notation recommended by the International Society for Forensic Genetics (ISFG). An initial compatibility and concordance study confirmed the software's independent functionality and precise allele calling with data of different MPS platforms, STR amplification kits, and library preparation chemistries. Discussion of genotyping results for single source and mixed samples demonstrates toaSTR's advantages and includes suggestions for future MPS software development. The beta version of toaSTR is freely accessible at www.toastr.online.
Stichworte
DNA typing; Short tandem repeat (STR); Massively parallel sequencing; (MPS); Next-generation sequencing (NGS); Web application
Erscheinungsjahr
2018
Zeitschriftentitel
Forensic Science International: Genetics
Band
37
Seite(n)
21-28
ISSN
1872-4973
eISSN
1878-0326
Page URI
https://pub.uni-bielefeld.de/record/2931971

Zitieren

Ganschow S, Silvery J, Kalinowski J, Tiemann C. toaSTR: A web application for forensic STR genotyping by massively parallel sequencing. Forensic Science International: Genetics . 2018;37:21-28.
Ganschow, S., Silvery, J., Kalinowski, J., & Tiemann, C. (2018). toaSTR: A web application for forensic STR genotyping by massively parallel sequencing. Forensic Science International: Genetics , 37, 21-28. doi:10.1016/j.fsigen.2018.07.006
Ganschow, S., Silvery, J., Kalinowski, J., and Tiemann, C. (2018). toaSTR: A web application for forensic STR genotyping by massively parallel sequencing. Forensic Science International: Genetics 37, 21-28.
Ganschow, S., et al., 2018. toaSTR: A web application for forensic STR genotyping by massively parallel sequencing. Forensic Science International: Genetics , 37, p 21-28.
S. Ganschow, et al., “toaSTR: A web application for forensic STR genotyping by massively parallel sequencing”, Forensic Science International: Genetics , vol. 37, 2018, pp. 21-28.
Ganschow, S., Silvery, J., Kalinowski, J., Tiemann, C.: toaSTR: A web application for forensic STR genotyping by massively parallel sequencing. Forensic Science International: Genetics . 37, 21-28 (2018).
Ganschow, Sebastian, Silvery, Janine, Kalinowski, Jörn, and Tiemann, Carsten. “toaSTR: A web application for forensic STR genotyping by massively parallel sequencing”. Forensic Science International: Genetics 37 (2018): 21-28.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 30071493
PubMed | Europe PMC

Suchen in

Google Scholar