Application of reduced sensor movement sequences as a precursor for search area partitioning and a selection of discrete EEV-contour-ring fragments for active electrolocation

Wolf-Homeyer S, Engelmann J, Schneider A (2018)
Bioinspiration & Biomimetics 13(6): 66008.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Erscheinungsjahr
2018
Zeitschriftentitel
Bioinspiration & Biomimetics
Band
13
Ausgabe
6
Art.-Nr.
66008
ISSN
1748-3182
eISSN
1748-3190
Page URI
https://pub.uni-bielefeld.de/record/2931568

Zitieren

Wolf-Homeyer S, Engelmann J, Schneider A. Application of reduced sensor movement sequences as a precursor for search area partitioning and a selection of discrete EEV-contour-ring fragments for active electrolocation. Bioinspiration & Biomimetics. 2018;13(6): 66008.
Wolf-Homeyer, S., Engelmann, J., & Schneider, A. (2018). Application of reduced sensor movement sequences as a precursor for search area partitioning and a selection of discrete EEV-contour-ring fragments for active electrolocation. Bioinspiration & Biomimetics, 13(6), 66008. doi:10.1088/1748-3190/aae23f
Wolf-Homeyer, Sabine, Engelmann, Jacob, and Schneider, Axel. 2018. “Application of reduced sensor movement sequences as a precursor for search area partitioning and a selection of discrete EEV-contour-ring fragments for active electrolocation”. Bioinspiration & Biomimetics 13 (6): 66008.
Wolf-Homeyer, S., Engelmann, J., and Schneider, A. (2018). Application of reduced sensor movement sequences as a precursor for search area partitioning and a selection of discrete EEV-contour-ring fragments for active electrolocation. Bioinspiration & Biomimetics 13:66008.
Wolf-Homeyer, S., Engelmann, J., & Schneider, A., 2018. Application of reduced sensor movement sequences as a precursor for search area partitioning and a selection of discrete EEV-contour-ring fragments for active electrolocation. Bioinspiration & Biomimetics, 13(6): 66008.
S. Wolf-Homeyer, J. Engelmann, and A. Schneider, “Application of reduced sensor movement sequences as a precursor for search area partitioning and a selection of discrete EEV-contour-ring fragments for active electrolocation”, Bioinspiration & Biomimetics, vol. 13, 2018, : 66008.
Wolf-Homeyer, S., Engelmann, J., Schneider, A.: Application of reduced sensor movement sequences as a precursor for search area partitioning and a selection of discrete EEV-contour-ring fragments for active electrolocation. Bioinspiration & Biomimetics. 13, : 66008 (2018).
Wolf-Homeyer, Sabine, Engelmann, Jacob, and Schneider, Axel. “Application of reduced sensor movement sequences as a precursor for search area partitioning and a selection of discrete EEV-contour-ring fragments for active electrolocation”. Bioinspiration & Biomimetics 13.6 (2018): 66008.

35 References

Daten bereitgestellt von Europe PubMed Central.

Electrolocation of objects in fluids by means of active sensor movements based on discrete EEVs.
Wolf-Homeyer S, Engelmann J, Schneider A., Bioinspir Biomim 11(5), 2016
PMID: 27530278

AUTHOR UNKNOWN, 0

Lissmann, J. Exp. Biol. 35(), 1958
Active electrolocation of objects in weakly electric fish
von der Emde G ., J. Exp. Biol. 202(# (Pt 10)), 1999
PMID: 10210662

Engelmann, Active Electrolocation (), 2011
Active sensing via movement shapes spatiotemporal patterns of sensory feedback.
Stamper SA, Roth E, Cowan NJ, Fortune ES., J. Exp. Biol. 215(Pt 9), 2012
PMID: 22496294
Motion parallax in electric sensing.
Pedraja F, Hofmann V, Lucas KM, Young C, Engelmann J, Lewis JE., Proc. Natl. Acad. Sci. U.S.A. 115(3), 2018
PMID: 29295924

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

Rasnow, Advances in Neural Information Processing Systems (), 1989
Modeling the electric field of weakly electric fish.
Babineau D, Longtin A, Lewis JE., J. Exp. Biol. 209(Pt 18), 2006
PMID: 16943504
Peripheral electrosensory imaging by weakly electric fish.
Caputi AA, Budelli R., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 192(6), 2006
PMID: 16501980

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Human-in-the-loop active electrosense.
Fang S, Peshkin M, MacIver MA., Bioinspir Biomim 12(1), 2016
PMID: 27995901
Biomimetic and bio-inspired robotics in electric fish research.
Neveln ID, Bai Y, Snyder JB, Solberg JR, Curet OM, Lynch KM, MacIver MA., J. Exp. Biol. 216(Pt 13), 2013
PMID: 23761475

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

Bai, Bioinspir Biomim 11(), 2016

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

Landau, Electrodynamics of Continuous Media 8(), 1984

Rasnow, J. Comput. Physiol. 178(), 1996

Schroeder, The Visualization Toolkit. An Object-Oriented Approach to 3D Graphics (), 2006
Motor patterns during active electrosensory acquisition.
Hofmann V, Geurten BR, Sanguinetti-Scheck JI, Gomez-Sena L, Engelmann J., Front Behav Neurosci 8(), 2014
PMID: 24904337
Reactive underwater object inspection based on artificial electric sense.
Lebastard V, Boyer F, Lanneau S., Bioinspir Biomim 11(4), 2016
PMID: 27458187

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

Rasnow, Communication in Fishes (), 2005

Silverman, Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (), 2012

Silverman, Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (), 2013
Sensory acquisition in active sensing systems.
Nelson ME, MacIver MA., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 192(6), 2006
PMID: 16645885
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 30226470
PubMed | Europe PMC

Suchen in

Google Scholar