Path homology theory of multigraphs and quivers

Grigoryan A, Muranov Y, Vershinin V, Yau S-T (2018)
FORUM MATHEMATICUM 30(5): 1319-1337.

Zeitschriftenaufsatz | Veröffentlicht| Englisch
 
Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Autor/in
Grigoryan, AlexanderUniBi; Muranov, Yuri; Vershinin, Vladimir; Yau, Shing-Tung
Erscheinungsjahr
2018
Zeitschriftentitel
FORUM MATHEMATICUM
Band
30
Ausgabe
5
Seite(n)
1319-1337
ISSN
0933-7741
eISSN
1435-5337
Page URI
https://pub.uni-bielefeld.de/record/2931240

Zitieren

Grigoryan A, Muranov Y, Vershinin V, Yau S-T. Path homology theory of multigraphs and quivers. FORUM MATHEMATICUM. 2018;30(5):1319-1337.
Grigoryan, A., Muranov, Y., Vershinin, V., & Yau, S. - T. (2018). Path homology theory of multigraphs and quivers. FORUM MATHEMATICUM, 30(5), 1319-1337. doi:10.1515/forum-2018-0015
Grigoryan, A., Muranov, Y., Vershinin, V., and Yau, S. - T. (2018). Path homology theory of multigraphs and quivers. FORUM MATHEMATICUM 30, 1319-1337.
Grigoryan, A., et al., 2018. Path homology theory of multigraphs and quivers. FORUM MATHEMATICUM, 30(5), p 1319-1337.
A. Grigoryan, et al., “Path homology theory of multigraphs and quivers”, FORUM MATHEMATICUM, vol. 30, 2018, pp. 1319-1337.
Grigoryan, A., Muranov, Y., Vershinin, V., Yau, S.-T.: Path homology theory of multigraphs and quivers. FORUM MATHEMATICUM. 30, 1319-1337 (2018).
Grigoryan, Alexander, Muranov, Yuri, Vershinin, Vladimir, and Yau, Shing-Tung. “Path homology theory of multigraphs and quivers”. FORUM MATHEMATICUM 30.5 (2018): 1319-1337.