Both stiff and compliant: morphological and biomechanical adaptations of stick insect antennae for tactile exploration

Rajabi H, Shafiei A, Darvizeh A, Gorb SN, Dürr V, Dirks J-H (2018)
JOURNAL OF THE ROYAL SOCIETY INTERFACE 15(144): 20180246.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Rajabi, H.; Shafiei, A.; Darvizeh, A.; Gorb, S. N.; Dürr, VolkerUniBi ; Dirks, J. -H.
Abstract / Bemerkung
Active tactile exploration behaviour is constrained to a large extent by the morphological and biomechanical properties of the animal's somatosensory system. In the model organism Carausius morosus, the main tactile sensory organs are long, thin, seemingly delicate, but very robust antennae. Previous studies have shown that these antennae are compliant under contact, yet stiff enough to maintain a straight shape during active exploration. Overcritical damping of the flagellum, on the other hand, allows for a rapid return to the straight shape after release of contact. Which roles do the morphological and biomechanical adaptations of the flagellum play in determining these special mechanical properties? To investigate this question, we used a combination of biomechanical experiments and numerical modelling. A set of four finite-element (FE) model variants was derived to investigate the effect of the distinct geometrical and material properties of the flagellum on its static (bending) and dynamic (damping) characteristics. The results of our numerical simulations show that the tapered shape of the flagellum had the strongest influence on its static biomechanical behaviour. The annulated structure and thickness gradient affected the deformability of the flagellum to a lesser degree. The inner endocuticle layer of the flagellum was confirmed to be essential for explaining the strongly damped return behaviour of the antenna. By highlighting the significance of two out of the four main structural features of the insect flagellum, our study provides a basis for mechanical design of biomimetic touch sensors tuned to become maximally flexible while quickly resuming a straight shape after contact.
Stichworte
active exploration; flagellum; cuticle; damping; biomimetics
Erscheinungsjahr
2018
Zeitschriftentitel
JOURNAL OF THE ROYAL SOCIETY INTERFACE
Band
15
Ausgabe
144
Art.-Nr.
20180246
ISSN
1742-5689
eISSN
1742-5662
Page URI
https://pub.uni-bielefeld.de/record/2930523

Zitieren

Rajabi H, Shafiei A, Darvizeh A, Gorb SN, Dürr V, Dirks J-H. Both stiff and compliant: morphological and biomechanical adaptations of stick insect antennae for tactile exploration. JOURNAL OF THE ROYAL SOCIETY INTERFACE. 2018;15(144): 20180246.
Rajabi, H., Shafiei, A., Darvizeh, A., Gorb, S. N., Dürr, V., & Dirks, J. - H. (2018). Both stiff and compliant: morphological and biomechanical adaptations of stick insect antennae for tactile exploration. JOURNAL OF THE ROYAL SOCIETY INTERFACE, 15(144), 20180246. doi:10.1098/rsif.2018.0246
Rajabi, H., Shafiei, A., Darvizeh, A., Gorb, S. N., Dürr, Volker, and Dirks, J. -H. 2018. “Both stiff and compliant: morphological and biomechanical adaptations of stick insect antennae for tactile exploration”. JOURNAL OF THE ROYAL SOCIETY INTERFACE 15 (144): 20180246.
Rajabi, H., Shafiei, A., Darvizeh, A., Gorb, S. N., Dürr, V., and Dirks, J. - H. (2018). Both stiff and compliant: morphological and biomechanical adaptations of stick insect antennae for tactile exploration. JOURNAL OF THE ROYAL SOCIETY INTERFACE 15:20180246.
Rajabi, H., et al., 2018. Both stiff and compliant: morphological and biomechanical adaptations of stick insect antennae for tactile exploration. JOURNAL OF THE ROYAL SOCIETY INTERFACE, 15(144): 20180246.
H. Rajabi, et al., “Both stiff and compliant: morphological and biomechanical adaptations of stick insect antennae for tactile exploration”, JOURNAL OF THE ROYAL SOCIETY INTERFACE, vol. 15, 2018, : 20180246.
Rajabi, H., Shafiei, A., Darvizeh, A., Gorb, S.N., Dürr, V., Dirks, J.-H.: Both stiff and compliant: morphological and biomechanical adaptations of stick insect antennae for tactile exploration. JOURNAL OF THE ROYAL SOCIETY INTERFACE. 15, : 20180246 (2018).
Rajabi, H., Shafiei, A., Darvizeh, A., Gorb, S. N., Dürr, Volker, and Dirks, J. -H. “Both stiff and compliant: morphological and biomechanical adaptations of stick insect antennae for tactile exploration”. JOURNAL OF THE ROYAL SOCIETY INTERFACE 15.144 (2018): 20180246.

Link(s) zu Volltext(en)
Access Level
OA Open Access

1 Zitation in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Material stiffness variation in mosquito antennae.
Saltin BD, Matsumura Y, Reid A, Windmill JF, Gorb SN, Jackson JC., J R Soc Interface 16(154), 2019
PMID: 31088259

44 References

Daten bereitgestellt von Europe PubMed Central.


AUTHOR UNKNOWN, 0
Stick insect antennae
Dürr, Scholarpedia 9(), 2014
Tactile efficiency of insect antennae with two hinge joints.
Krause AF, Durr V., Biol Cybern 91(3), 2004
PMID: 15378371
Slanted joint axes of the stick insect antenna: an adaptation to tactile acuity.
Mujagic S, Krause AF, Durr V., Naturwissenschaften 94(4), 2006
PMID: 17180615
Characterization of obstacle negotiation behaviors in the cockroach, Blaberus discoidalis.
Harley CM, English BA, Ritzmann RE., J. Exp. Biol. 212(Pt 10), 2009
PMID: 19411540

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Cricket antennae shorten when bending (Acheta domesticus L.).
Loudon C, Bustamante J Jr, Kellogg DW., Front Physiol 5(), 2014
PMID: 25018734
Memoirs: on the antennal musculature in insects and other arthropods
Imms, Quart. J. Microsc. Sci. 2(), 1939
Stiffness distribution in insect cuticle: a continuous or a discontinuous profile?
Rajabi H, Jafarpour M, Darvizeh A, Dirks JH, Gorb SN., J R Soc Interface 14(132), 2017
PMID: 28724628
Design and mechanical properties of insect cuticle.
Vincent JFV, Wegst UGK., Arthropod structure & development. 33(3), 2004
PMID: IND43653715
Fracture toughness of locust cuticle.
Dirks JH, Taylor D., J. Exp. Biol. 215(Pt 9), 2012
PMID: 22496286
Flexural stiffness in insect wings. II. Spatial distribution and dynamic wing bending.
Combes SA, Daniel TL., J. Exp. Biol. 206(Pt 17), 2003
PMID: 12878667
Dragonfly wing nodus: A one-way hinge contributing to the asymmetric wing deformation.
Rajabi H, Ghoroubi N, Stamm K, Appel E, Gorb SN., Acta Biomater 60(), 2017
PMID: 28739543

AUTHOR UNKNOWN, 0
Effects of multiple vein microjoints on the mechanical behaviour of dragonfly wings: numerical modelling.
Rajabi H, Ghoroubi N, Darvizeh A, Appel E, Gorb SN., R Soc Open Sci 3(3), 2016
PMID: 27069649
A comparative study of the effects of constructional elements on the mechanical behaviour of dragonfly wings
Rajabi, Appl. Phys. A 122(), 2016
Numerical investigation of insect wing fracture behaviour.
Rajabi H, Darvizeh A, Shafiei A, Taylor D, Dirks JH., J Biomech 48(1), 2014
PMID: 25468669
A comparative study of the effects of vein-joints on the mechanical behaviour of insect wings: I. Single joints.
Rajabi H, Ghoroubi N, Darvizeh A, Dirks JH, Appel E, Gorb SN., Bioinspir Biomim 10(5), 2015
PMID: 26292260
Effect of microstructure on the mechanical and damping behaviour of dragonfly wing veins.
Rajabi H, Shafiei A, Darvizeh A, Dirks JH, Appel E, Gorb SN., R Soc Open Sci 3(2), 2016
PMID: 26998340
Basal Complex and Basal Venation of Odonata Wings: Structural Diversity and Potential Role in the Wing Deformation.
Rajabi H, Ghoroubi N, Malaki M, Darvizeh A, Gorb SN., PLoS ONE 11(8), 2016
PMID: 27513753
Resilin microjoints: a smart design strategy to avoid failure in dragonfly wings.
Rajabi H, Shafiei A, Darvizeh A, Gorb SN., Sci Rep 6(), 2016
PMID: 27966641

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Viscous damping approximation of laminated anisotropic composite plates using the finite element method
Zabaras, Comput. Methods Appl. Mech. Eng. 81(), 1990
Damping characterization of unidirectional fibre reinforced polymer composites
Kaliske, Compos. Eng. 5(), 1995

AUTHOR UNKNOWN, 0
Active tactile exploration for adaptive locomotion in the stick insect.
Schutz C, Durr V., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 366(1581), 2011
PMID: 21969681

AUTHOR UNKNOWN, 0
Mechanical processing via passive dynamic properties of the cockroach antenna can facilitate control during rapid running.
Mongeau JM, Demir A, Dallmann CJ, Jayaram K, Cowan NJ, Full RJ., J. Exp. Biol. 217(Pt 18), 2014
PMID: 25013115
Central drive and proprioceptive control of antennal movements in the walking stick insect.
Krause AF, Winkler A, Durr V., J. Physiol. Paris 107(1-2), 2012
PMID: 22728470

AUTHOR UNKNOWN, 0
Templates and anchors for antenna-based wall following in cockroaches and robots
Lee, IEEE Trans. Robotic. 24(), 2008
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 30045891
PubMed | Europe PMC

Suchen in

Google Scholar