Characterization of the small flavin-binding dodecin in the roseoflavin producer Streptomyces davawensis
Ludwig P, Sevin DC, Busche T, Kalinowski J, Bourdeaux F, Grininger M, Mack M (2018)
MICROBIOLOGY-SGM 164(6): 908-919.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Ludwig, Petra;
Sevin, Daniel C.;
Busche, TobiasUniBi;
Kalinowski, JörnUniBi;
Bourdeaux, Florian;
Grininger, Martin;
Mack, Matthias
Einrichtung
Abstract / Bemerkung
Genes encoding dodecin proteins are present in almost 20% of archaeal and in more than 50% of bacterial genomes. Archaeal dodecins bind riboflavin (vitamin B-2), are thought to play a role in flavin homeostasis and possibly also help to protect cells from radical or oxygenic stress. Bacterial dodecins were found to bind riboflavin-5'-phosphate (also called flavin mononucleotide or FMN) and coenzyme A, but their physiological function remained unknown. In this study, we set out to investigate the relevance of dodecins for flavin metabolism and oxidative stress management in the phylogenetically related bacteria Streptomyces coelicolor and Streptomyces davawensis. Additionally, we explored the role of dodecins with regard to resistance against the antibiotic roseoflavin, a riboflavin analogue produced by S. davawensis. Our results show that the dodecin of S. davawensis predominantly binds FMN and is neither involved in roseoflavin biosynthesis nor in roseoflavin resistance. In contrast to S. davawensis, growth of S. coelicolor was not reduced in the presence of plumbagin, a compound, which induces oxidative stress. Plumbagin treatment stimulated expression of the dodecin gene in S. davawensis but not in S. coelicolor. Deletion of the dodecin gene in S. davawensis generated a recombinant strain which, in contrast to the wild-type, was fully resistant to plumbagin. Subsequent metabolome analyses revealed that the S. davawensis dodecin deletion strain exhibited a very different stress response when compared to the wild-type indicating that dodecins broadly affect cellular physiology.
Stichworte
Streptomycetes;
flavins;
roseoflavin;
riboflavin;
dodecin
Erscheinungsjahr
2018
Zeitschriftentitel
MICROBIOLOGY-SGM
Band
164
Ausgabe
6
Seite(n)
908-919
ISSN
1350-0872
eISSN
1465-2080
Page URI
https://pub.uni-bielefeld.de/record/2930276
Zitieren
Ludwig P, Sevin DC, Busche T, et al. Characterization of the small flavin-binding dodecin in the roseoflavin producer Streptomyces davawensis. MICROBIOLOGY-SGM. 2018;164(6):908-919.
Ludwig, P., Sevin, D. C., Busche, T., Kalinowski, J., Bourdeaux, F., Grininger, M., & Mack, M. (2018). Characterization of the small flavin-binding dodecin in the roseoflavin producer Streptomyces davawensis. MICROBIOLOGY-SGM, 164(6), 908-919. doi:10.1099/mic.0.000662
Ludwig, Petra, Sevin, Daniel C., Busche, Tobias, Kalinowski, Jörn, Bourdeaux, Florian, Grininger, Martin, and Mack, Matthias. 2018. “Characterization of the small flavin-binding dodecin in the roseoflavin producer Streptomyces davawensis”. MICROBIOLOGY-SGM 164 (6): 908-919.
Ludwig, P., Sevin, D. C., Busche, T., Kalinowski, J., Bourdeaux, F., Grininger, M., and Mack, M. (2018). Characterization of the small flavin-binding dodecin in the roseoflavin producer Streptomyces davawensis. MICROBIOLOGY-SGM 164, 908-919.
Ludwig, P., et al., 2018. Characterization of the small flavin-binding dodecin in the roseoflavin producer Streptomyces davawensis. MICROBIOLOGY-SGM, 164(6), p 908-919.
P. Ludwig, et al., “Characterization of the small flavin-binding dodecin in the roseoflavin producer Streptomyces davawensis”, MICROBIOLOGY-SGM, vol. 164, 2018, pp. 908-919.
Ludwig, P., Sevin, D.C., Busche, T., Kalinowski, J., Bourdeaux, F., Grininger, M., Mack, M.: Characterization of the small flavin-binding dodecin in the roseoflavin producer Streptomyces davawensis. MICROBIOLOGY-SGM. 164, 908-919 (2018).
Ludwig, Petra, Sevin, Daniel C., Busche, Tobias, Kalinowski, Jörn, Bourdeaux, Florian, Grininger, Martin, and Mack, Matthias. “Characterization of the small flavin-binding dodecin in the roseoflavin producer Streptomyces davawensis”. MICROBIOLOGY-SGM 164.6 (2018): 908-919.
Daten bereitgestellt von European Bioinformatics Institute (EBI)
Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
42 References
Daten bereitgestellt von Europe PubMed Central.
Flavoenzymes: diverse catalysts with recurrent features.
Fraaije MW, Mattevi A., Trends Biochem. Sci. 25(3), 2000
PMID: 10694883
Fraaije MW, Mattevi A., Trends Biochem. Sci. 25(3), 2000
PMID: 10694883
Flavogenomics--a genomic and structural view of flavin-dependent proteins.
Macheroux P, Kappes B, Ealick SE., FEBS J. 278(15), 2011
PMID: 21635694
Macheroux P, Kappes B, Ealick SE., FEBS J. 278(15), 2011
PMID: 21635694
Crystal structure of halophilic dodecin: a novel, dodecameric flavin binding protein from Halobacterium salinarum.
Bieger B, Essen LO, Oesterhelt D., Structure 11(4), 2003
PMID: 12679016
Bieger B, Essen LO, Oesterhelt D., Structure 11(4), 2003
PMID: 12679016
Dodecin is the key player in flavin homeostasis of archaea.
Grininger M, Staudt H, Johansson P, Wachtveitl J, Oesterhelt D., J. Biol. Chem. 284(19), 2009
PMID: 19224924
Grininger M, Staudt H, Johansson P, Wachtveitl J, Oesterhelt D., J. Biol. Chem. 284(19), 2009
PMID: 19224924
The dodecin from Thermus thermophilus, a bifunctional cofactor storage protein.
Meissner B, Schleicher E, Weber S, Essen LO., J. Biol. Chem. 282(45), 2007
PMID: 17855371
Meissner B, Schleicher E, Weber S, Essen LO., J. Biol. Chem. 282(45), 2007
PMID: 17855371
Structural and biophysical characterization of Mycobacterium tuberculosis dodecin Rv1498A.
Liu F, Xiong J, Kumar S, Yang C, Ge S, Li S, Xia N, Swaminathan K., J. Struct. Biol. 175(1), 2011
PMID: 21539921
Liu F, Xiong J, Kumar S, Yang C, Ge S, Li S, Xia N, Swaminathan K., J. Struct. Biol. 175(1), 2011
PMID: 21539921
Chemical engineering of Mycobacterium tuberculosis dodecin hybrids.
Vinzenz X, Grosse W, Linne U, Meissner B, Essen LO., Chem. Commun. (Camb.) 47(39), 2011
PMID: 21897938
Vinzenz X, Grosse W, Linne U, Meissner B, Essen LO., Chem. Commun. (Camb.) 47(39), 2011
PMID: 21897938
Genetic control of biosynthesis and transport of riboflavin and flavin nucleotides and construction of robust biotechnological producers.
Abbas CA, Sibirny AA., Microbiol. Mol. Biol. Rev. 75(2), 2011
PMID: 21646432
Abbas CA, Sibirny AA., Microbiol. Mol. Biol. Rev. 75(2), 2011
PMID: 21646432
Ultrafast excited-state deactivation of flavins bound to dodecin.
Staudt H, Oesterhelt D, Grininger M, Wachtveitl J., J. Biol. Chem. 287(21), 2012
PMID: 22451648
Staudt H, Oesterhelt D, Grininger M, Wachtveitl J., J. Biol. Chem. 287(21), 2012
PMID: 22451648
Genome sequence of the bacterium Streptomyces davawensis JCM 4913 and heterologous production of the unique antibiotic roseoflavin.
Jankowitsch F, Schwarz J, Ruckert C, Gust B, Szczepanowski R, Blom J, Pelzer S, Kalinowski J, Mack M., J. Bacteriol. 194(24), 2012
PMID: 23043000
Jankowitsch F, Schwarz J, Ruckert C, Gust B, Szczepanowski R, Blom J, Pelzer S, Kalinowski J, Mack M., J. Bacteriol. 194(24), 2012
PMID: 23043000
AUTHOR UNKNOWN, 0
A highly specialized flavin mononucleotide riboswitch responds differently to similar ligands and confers roseoflavin resistance to Streptomyces davawensis.
Pedrolli DB, Matern A, Wang J, Ester M, Siedler K, Breaker R, Mack M., Nucleic Acids Res. 40(17), 2012
PMID: 22740651
Pedrolli DB, Matern A, Wang J, Ester M, Siedler K, Breaker R, Mack M., Nucleic Acids Res. 40(17), 2012
PMID: 22740651
Roseoflavin is a natural antibacterial compound that binds to FMN riboswitches and regulates gene expression.
Lee ER, Blount KF, Breaker RR., RNA Biol 6(2), 2009
PMID: 19246992
Lee ER, Blount KF, Breaker RR., RNA Biol 6(2), 2009
PMID: 19246992
The RFN riboswitch of Bacillus subtilis is a target for the antibiotic roseoflavin produced by Streptomyces davawensis.
Ott E, Stolz J, Lehmann M, Mack M., RNA Biol 6(3), 2009
PMID: 19333008
Ott E, Stolz J, Lehmann M, Mack M., RNA Biol 6(3), 2009
PMID: 19333008
Dual-Targeting Small-Molecule Inhibitors of the Staphylococcus aureus FMN Riboswitch Disrupt Riboflavin Homeostasis in an Infectious Setting.
Wang H, Mann PA, Xiao L, Gill C, Galgoci AM, Howe JA, Villafania A, Barbieri CM, Malinverni JC, Sher X, Mayhood T, McCurry MD, Murgolo N, Flattery A, Mack M, Roemer T., Cell Chem Biol 24(5), 2017
PMID: 28434876
Wang H, Mann PA, Xiao L, Gill C, Galgoci AM, Howe JA, Villafania A, Barbieri CM, Malinverni JC, Sher X, Mayhood T, McCurry MD, Murgolo N, Flattery A, Mack M, Roemer T., Cell Chem Biol 24(5), 2017
PMID: 28434876
Flavoproteins are potential targets for the antibiotic roseoflavin in Escherichia coli.
Langer S, Hashimoto M, Hobl B, Mathes T, Mack M., J. Bacteriol. 195(18), 2013
PMID: 23836860
Langer S, Hashimoto M, Hobl B, Mathes T, Mack M., J. Bacteriol. 195(18), 2013
PMID: 23836860
The flavoenzyme azobenzene reductase AzoR from Escherichia coli binds roseoflavin mononucleotide (RoFMN) with high affinity and is less active in its RoFMN form.
Langer S, Nakanishi S, Mathes T, Knaus T, Binter A, Macheroux P, Mase T, Miyakawa T, Tanokura M, Mack M., Biochemistry 52(25), 2013
PMID: 23713585
Langer S, Nakanishi S, Mathes T, Knaus T, Binter A, Macheroux P, Mase T, Miyakawa T, Tanokura M, Mack M., Biochemistry 52(25), 2013
PMID: 23713585
The ribB FMN riboswitch from Escherichia coli operates at the transcriptional and translational level and regulates riboflavin biosynthesis.
Pedrolli D, Langer S, Hobl B, Schwarz J, Hashimoto M, Mack M., FEBS J. 282(16), 2015
PMID: 25661987
Pedrolli D, Langer S, Hobl B, Schwarz J, Hashimoto M, Mack M., FEBS J. 282(16), 2015
PMID: 25661987
Natural riboflavin analogs.
Pedrolli DB, Jankowitsch F, Schwarz J, Langer S, Nakanishi S, Mack M., Methods Mol. Biol. 1146(), 2014
PMID: 24764087
Pedrolli DB, Jankowitsch F, Schwarz J, Langer S, Nakanishi S, Mack M., Methods Mol. Biol. 1146(), 2014
PMID: 24764087
Bacterial flavin mononucleotide riboswitches as targets for flavin analogs.
Pedrolli DB, Mack M., Methods Mol. Biol. 1103(), 2014
PMID: 24318894
Pedrolli DB, Mack M., Methods Mol. Biol. 1103(), 2014
PMID: 24318894
The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium.
Imlay JA., Nat. Rev. Microbiol. 11(7), 2013
PMID: 23712352
Imlay JA., Nat. Rev. Microbiol. 11(7), 2013
PMID: 23712352
Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli.
Bennett BD, Kimball EH, Gao M, Osterhout R, Van Dien SJ, Rabinowitz JD., Nat. Chem. Biol. 5(8), 2009
PMID: 19561621
Bennett BD, Kimball EH, Gao M, Osterhout R, Van Dien SJ, Rabinowitz JD., Nat. Chem. Biol. 5(8), 2009
PMID: 19561621
The antibiotics roseoflavin and 8-demethyl-8-amino-riboflavin from Streptomyces davawensis are metabolized by human flavokinase and human FAD synthetase.
Pedrolli DB, Nakanishi S, Barile M, Mansurova M, Carmona EC, Lux A, Gartner W, Mack M., Biochem. Pharmacol. 82(12), 2011
PMID: 21924249
Pedrolli DB, Nakanishi S, Barile M, Mansurova M, Carmona EC, Lux A, Gartner W, Mack M., Biochem. Pharmacol. 82(12), 2011
PMID: 21924249
Lysogeny at mid-twentieth century: P1, P2, and other experimental systems.
Bertani G., J. Bacteriol. 186(3), 2004
PMID: 14729683
Bertani G., J. Bacteriol. 186(3), 2004
PMID: 14729683
Identification of the Key Enzyme of Roseoflavin Biosynthesis.
Schwarz J, Konjik V, Jankowitsch F, Sandhoff R, Mack M., Angew. Chem. Int. Ed. Engl. 55(20), 2016
PMID: 27062037
Schwarz J, Konjik V, Jankowitsch F, Sandhoff R, Mack M., Angew. Chem. Int. Ed. Engl. 55(20), 2016
PMID: 27062037
Sulfur-limitation-regulated proteins in Bacillus subtilis: a two-dimensional gel electrophoresis study.
Coppee JY, Auger S, Turlin E, Sekowska A, Le Caer JP, Labas V, Vagner V, Danchin A, Martin-Verstraete I., Microbiology (Reading, Engl.) 147(Pt 6), 2001
PMID: 11390694
Coppee JY, Auger S, Turlin E, Sekowska A, Le Caer JP, Labas V, Vagner V, Danchin A, Martin-Verstraete I., Microbiology (Reading, Engl.) 147(Pt 6), 2001
PMID: 11390694
High-throughput, accurate mass metabolome profiling of cellular extracts by flow injection-time-of-flight mass spectrometry.
Fuhrer T, Heer D, Begemann B, Zamboni N., Anal. Chem. 83(18), 2011
PMID: 21830798
Fuhrer T, Heer D, Begemann B, Zamboni N., Anal. Chem. 83(18), 2011
PMID: 21830798
Ergothioneine protects Streptomyces coelicolor A3(2) from oxidative stresses.
Nakajima S, Satoh Y, Yanashima K, Matsui T, Dairi T., J. Biosci. Bioeng. 120(3), 2015
PMID: 25683449
Nakajima S, Satoh Y, Yanashima K, Matsui T, Dairi T., J. Biosci. Bioeng. 120(3), 2015
PMID: 25683449
Ergothioneine Maintains Redox and Bioenergetic Homeostasis Essential for Drug Susceptibility and Virulence of Mycobacterium tuberculosis.
Saini V, Cumming BM, Guidry L, Lamprecht DA, Adamson JH, Reddy VP, Chinta KC, Mazorodze JH, Glasgow JN, Richard-Greenblatt M, Gomez-Velasco A, Bach H, Av-Gay Y, Eoh H, Rhee K, Steyn AJC., Cell Rep 14(3), 2016
PMID: 26774486
Saini V, Cumming BM, Guidry L, Lamprecht DA, Adamson JH, Reddy VP, Chinta KC, Mazorodze JH, Glasgow JN, Richard-Greenblatt M, Gomez-Velasco A, Bach H, Av-Gay Y, Eoh H, Rhee K, Steyn AJC., Cell Rep 14(3), 2016
PMID: 26774486
RNA-Seq and RNA immunoprecipitation analyses of the transcriptome of Streptomyces coelicolor identify substrates for RNase III.
Gatewood ML, Bralley P, Weil MR, Jones GH., J. Bacteriol. 194(9), 2012
PMID: 22389483
Gatewood ML, Bralley P, Weil MR, Jones GH., J. Bacteriol. 194(9), 2012
PMID: 22389483
In vivo generation of flavoproteins with modified cofactors.
Mathes T, Vogl C, Stolz J, Hegemann P., J. Mol. Biol. 385(5), 2008
PMID: 19027027
Mathes T, Vogl C, Stolz J, Hegemann P., J. Mol. Biol. 385(5), 2008
PMID: 19027027
The Crystal Structure of RosB: Insights into the Reaction Mechanism of the First Member of a Family of Flavodoxin-like Enzymes.
Konjik V, Brunle S, Demmer U, Vanselow A, Sandhoff R, Ermler U, Mack M., Angew. Chem. Int. Ed. Engl. 56(4), 2016
PMID: 27981706
Konjik V, Brunle S, Demmer U, Vanselow A, Sandhoff R, Ermler U, Mack M., Angew. Chem. Int. Ed. Engl. 56(4), 2016
PMID: 27981706
The bifunctional flavokinase/flavin adenine dinucleotide synthetase from Streptomyces davawensis produces inactive flavin cofactors and is not involved in resistance to the antibiotic roseoflavin.
Grill S, Busenbender S, Pfeiffer M, Kohler U, Mack M., J. Bacteriol. 190(5), 2007
PMID: 18156273
Grill S, Busenbender S, Pfeiffer M, Kohler U, Mack M., J. Bacteriol. 190(5), 2007
PMID: 18156273
Diagnosing oxidative stress in bacteria: not as easy as you might think.
Imlay JA., Curr. Opin. Microbiol. 24(), 2015
PMID: 25666086
Imlay JA., Curr. Opin. Microbiol. 24(), 2015
PMID: 25666086
Toxicity and mutagenicity of plumbagin and the induction of a possible new DNA repair pathway in Escherichia coli.
Farr SB, Natvig DO, Kogoma T., J. Bacteriol. 164(3), 1985
PMID: 2933393
Farr SB, Natvig DO, Kogoma T., J. Bacteriol. 164(3), 1985
PMID: 2933393
Data, information, knowledge and principle: back to metabolism in KEGG.
Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M., Nucleic Acids Res. 42(Database issue), 2013
PMID: 24214961
Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M., Nucleic Acids Res. 42(Database issue), 2013
PMID: 24214961
Mycothiol regulates and is regulated by a thiol-specific antisigma factor RsrA and sigma(R) in Streptomyces coelicolor.
Park JH, Roe JH., Mol. Microbiol. 68(4), 2008
PMID: 18430082
Park JH, Roe JH., Mol. Microbiol. 68(4), 2008
PMID: 18430082
Mycobacterium tuberculosis mycothione reductase: pH dependence of the kinetic parameters and kinetic isotope effects.
Patel MP, Blanchard JS., Biochemistry 40(17), 2001
PMID: 11318633
Patel MP, Blanchard JS., Biochemistry 40(17), 2001
PMID: 11318633
Multi-Ligand-Binding Flavoprotein Dodecin as a Key Element for Reversible Surface Modification in Nano-biotechnology.
Gutierrez Sanchez C, Su Q, Schonherr H, Grininger M, Noll G., ACS Nano 9(4), 2015
PMID: 25738566
Gutierrez Sanchez C, Su Q, Schonherr H, Grininger M, Noll G., ACS Nano 9(4), 2015
PMID: 25738566
Re-annotation of the genome sequence of Mycobacterium tuberculosis H37Rv.
Camus JC, Pryor MJ, Medigue C, Cole ST., Microbiology (Reading, Engl.) 148(Pt 10), 2002
PMID: 12368430
Camus JC, Pryor MJ, Medigue C, Cole ST., Microbiology (Reading, Engl.) 148(Pt 10), 2002
PMID: 12368430
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 29856311
PubMed | Europe PMC
Suchen in