Characterization of the small flavin-binding dodecin in the roseoflavin producer Streptomyces davawensis

Ludwig P, Sevin DC, Busche T, Kalinowski J, Bourdeaux F, Grininger M, Mack M (2018)
MICROBIOLOGY-SGM 164(6): 908-919.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Ludwig, Petra; Sevin, Daniel C.; Busche, TobiasUniBi; Kalinowski, JörnUniBi; Bourdeaux, Florian; Grininger, Martin; Mack, Matthias
Abstract / Bemerkung
Genes encoding dodecin proteins are present in almost 20% of archaeal and in more than 50% of bacterial genomes. Archaeal dodecins bind riboflavin (vitamin B-2), are thought to play a role in flavin homeostasis and possibly also help to protect cells from radical or oxygenic stress. Bacterial dodecins were found to bind riboflavin-5'-phosphate (also called flavin mononucleotide or FMN) and coenzyme A, but their physiological function remained unknown. In this study, we set out to investigate the relevance of dodecins for flavin metabolism and oxidative stress management in the phylogenetically related bacteria Streptomyces coelicolor and Streptomyces davawensis. Additionally, we explored the role of dodecins with regard to resistance against the antibiotic roseoflavin, a riboflavin analogue produced by S. davawensis. Our results show that the dodecin of S. davawensis predominantly binds FMN and is neither involved in roseoflavin biosynthesis nor in roseoflavin resistance. In contrast to S. davawensis, growth of S. coelicolor was not reduced in the presence of plumbagin, a compound, which induces oxidative stress. Plumbagin treatment stimulated expression of the dodecin gene in S. davawensis but not in S. coelicolor. Deletion of the dodecin gene in S. davawensis generated a recombinant strain which, in contrast to the wild-type, was fully resistant to plumbagin. Subsequent metabolome analyses revealed that the S. davawensis dodecin deletion strain exhibited a very different stress response when compared to the wild-type indicating that dodecins broadly affect cellular physiology.
Stichworte
Streptomycetes; flavins; roseoflavin; riboflavin; dodecin
Erscheinungsjahr
2018
Zeitschriftentitel
MICROBIOLOGY-SGM
Band
164
Ausgabe
6
Seite(n)
908-919
ISSN
1350-0872
eISSN
1465-2080
Page URI
https://pub.uni-bielefeld.de/record/2930276

Zitieren

Ludwig P, Sevin DC, Busche T, et al. Characterization of the small flavin-binding dodecin in the roseoflavin producer Streptomyces davawensis. MICROBIOLOGY-SGM. 2018;164(6):908-919.
Ludwig, P., Sevin, D. C., Busche, T., Kalinowski, J., Bourdeaux, F., Grininger, M., & Mack, M. (2018). Characterization of the small flavin-binding dodecin in the roseoflavin producer Streptomyces davawensis. MICROBIOLOGY-SGM, 164(6), 908-919. doi:10.1099/mic.0.000662
Ludwig, Petra, Sevin, Daniel C., Busche, Tobias, Kalinowski, Jörn, Bourdeaux, Florian, Grininger, Martin, and Mack, Matthias. 2018. “Characterization of the small flavin-binding dodecin in the roseoflavin producer Streptomyces davawensis”. MICROBIOLOGY-SGM 164 (6): 908-919.
Ludwig, P., Sevin, D. C., Busche, T., Kalinowski, J., Bourdeaux, F., Grininger, M., and Mack, M. (2018). Characterization of the small flavin-binding dodecin in the roseoflavin producer Streptomyces davawensis. MICROBIOLOGY-SGM 164, 908-919.
Ludwig, P., et al., 2018. Characterization of the small flavin-binding dodecin in the roseoflavin producer Streptomyces davawensis. MICROBIOLOGY-SGM, 164(6), p 908-919.
P. Ludwig, et al., “Characterization of the small flavin-binding dodecin in the roseoflavin producer Streptomyces davawensis”, MICROBIOLOGY-SGM, vol. 164, 2018, pp. 908-919.
Ludwig, P., Sevin, D.C., Busche, T., Kalinowski, J., Bourdeaux, F., Grininger, M., Mack, M.: Characterization of the small flavin-binding dodecin in the roseoflavin producer Streptomyces davawensis. MICROBIOLOGY-SGM. 164, 908-919 (2018).
Ludwig, Petra, Sevin, Daniel C., Busche, Tobias, Kalinowski, Jörn, Bourdeaux, Florian, Grininger, Martin, and Mack, Matthias. “Characterization of the small flavin-binding dodecin in the roseoflavin producer Streptomyces davawensis”. MICROBIOLOGY-SGM 164.6 (2018): 908-919.

42 References

Daten bereitgestellt von Europe PubMed Central.

Biosynthesis of flavocoenzymes.
Fischer M, Bacher A., Nat Prod Rep 22(3), 2005
PMID: 16010344
Flavoenzymes: diverse catalysts with recurrent features.
Fraaije MW, Mattevi A., Trends Biochem. Sci. 25(3), 2000
PMID: 10694883
Flavogenomics--a genomic and structural view of flavin-dependent proteins.
Macheroux P, Kappes B, Ealick SE., FEBS J. 278(15), 2011
PMID: 21635694
Dodecin is the key player in flavin homeostasis of archaea.
Grininger M, Staudt H, Johansson P, Wachtveitl J, Oesterhelt D., J. Biol. Chem. 284(19), 2009
PMID: 19224924
The dodecin from Thermus thermophilus, a bifunctional cofactor storage protein.
Meissner B, Schleicher E, Weber S, Essen LO., J. Biol. Chem. 282(45), 2007
PMID: 17855371
Structural and biophysical characterization of Mycobacterium tuberculosis dodecin Rv1498A.
Liu F, Xiong J, Kumar S, Yang C, Ge S, Li S, Xia N, Swaminathan K., J. Struct. Biol. 175(1), 2011
PMID: 21539921
Chemical engineering of Mycobacterium tuberculosis dodecin hybrids.
Vinzenz X, Grosse W, Linne U, Meissner B, Essen LO., Chem. Commun. (Camb.) 47(39), 2011
PMID: 21897938
Ultrafast excited-state deactivation of flavins bound to dodecin.
Staudt H, Oesterhelt D, Grininger M, Wachtveitl J., J. Biol. Chem. 287(21), 2012
PMID: 22451648
Genome sequence of the bacterium Streptomyces davawensis JCM 4913 and heterologous production of the unique antibiotic roseoflavin.
Jankowitsch F, Schwarz J, Ruckert C, Gust B, Szczepanowski R, Blom J, Pelzer S, Kalinowski J, Mack M., J. Bacteriol. 194(24), 2012
PMID: 23043000

AUTHOR UNKNOWN, 0
A highly specialized flavin mononucleotide riboswitch responds differently to similar ligands and confers roseoflavin resistance to Streptomyces davawensis.
Pedrolli DB, Matern A, Wang J, Ester M, Siedler K, Breaker R, Mack M., Nucleic Acids Res. 40(17), 2012
PMID: 22740651
Dual-Targeting Small-Molecule Inhibitors of the Staphylococcus aureus FMN Riboswitch Disrupt Riboflavin Homeostasis in an Infectious Setting.
Wang H, Mann PA, Xiao L, Gill C, Galgoci AM, Howe JA, Villafania A, Barbieri CM, Malinverni JC, Sher X, Mayhood T, McCurry MD, Murgolo N, Flattery A, Mack M, Roemer T., Cell Chem Biol 24(5), 2017
PMID: 28434876
Flavoproteins are potential targets for the antibiotic roseoflavin in Escherichia coli.
Langer S, Hashimoto M, Hobl B, Mathes T, Mack M., J. Bacteriol. 195(18), 2013
PMID: 23836860
The flavoenzyme azobenzene reductase AzoR from Escherichia coli binds roseoflavin mononucleotide (RoFMN) with high affinity and is less active in its RoFMN form.
Langer S, Nakanishi S, Mathes T, Knaus T, Binter A, Macheroux P, Mase T, Miyakawa T, Tanokura M, Mack M., Biochemistry 52(25), 2013
PMID: 23713585
Natural riboflavin analogs.
Pedrolli DB, Jankowitsch F, Schwarz J, Langer S, Nakanishi S, Mack M., Methods Mol. Biol. 1146(), 2014
PMID: 24764087
Bacterial flavin mononucleotide riboswitches as targets for flavin analogs.
Pedrolli DB, Mack M., Methods Mol. Biol. 1103(), 2014
PMID: 24318894
Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli.
Bennett BD, Kimball EH, Gao M, Osterhout R, Van Dien SJ, Rabinowitz JD., Nat. Chem. Biol. 5(8), 2009
PMID: 19561621
The antibiotics roseoflavin and 8-demethyl-8-amino-riboflavin from Streptomyces davawensis are metabolized by human flavokinase and human FAD synthetase.
Pedrolli DB, Nakanishi S, Barile M, Mansurova M, Carmona EC, Lux A, Gartner W, Mack M., Biochem. Pharmacol. 82(12), 2011
PMID: 21924249
Databases for Microbiologists.
Zhulin IB., J. Bacteriol. 197(15), 2015
PMID: 26013493
Identification of the Key Enzyme of Roseoflavin Biosynthesis.
Schwarz J, Konjik V, Jankowitsch F, Sandhoff R, Mack M., Angew. Chem. Int. Ed. Engl. 55(20), 2016
PMID: 27062037
Sulfur-limitation-regulated proteins in Bacillus subtilis: a two-dimensional gel electrophoresis study.
Coppee JY, Auger S, Turlin E, Sekowska A, Le Caer JP, Labas V, Vagner V, Danchin A, Martin-Verstraete I., Microbiology (Reading, Engl.) 147(Pt 6), 2001
PMID: 11390694
Ergothioneine protects Streptomyces coelicolor A3(2) from oxidative stresses.
Nakajima S, Satoh Y, Yanashima K, Matsui T, Dairi T., J. Biosci. Bioeng. 120(3), 2015
PMID: 25683449
Ergothioneine Maintains Redox and Bioenergetic Homeostasis Essential for Drug Susceptibility and Virulence of Mycobacterium tuberculosis.
Saini V, Cumming BM, Guidry L, Lamprecht DA, Adamson JH, Reddy VP, Chinta KC, Mazorodze JH, Glasgow JN, Richard-Greenblatt M, Gomez-Velasco A, Bach H, Av-Gay Y, Eoh H, Rhee K, Steyn AJC., Cell Rep 14(3), 2016
PMID: 26774486
In vivo generation of flavoproteins with modified cofactors.
Mathes T, Vogl C, Stolz J, Hegemann P., J. Mol. Biol. 385(5), 2008
PMID: 19027027
The Crystal Structure of RosB: Insights into the Reaction Mechanism of the First Member of a Family of Flavodoxin-like Enzymes.
Konjik V, Brunle S, Demmer U, Vanselow A, Sandhoff R, Ermler U, Mack M., Angew. Chem. Int. Ed. Engl. 56(4), 2016
PMID: 27981706
Diagnosing oxidative stress in bacteria: not as easy as you might think.
Imlay JA., Curr. Opin. Microbiol. 24(), 2015
PMID: 25666086
Data, information, knowledge and principle: back to metabolism in KEGG.
Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M., Nucleic Acids Res. 42(Database issue), 2013
PMID: 24214961
Multi-Ligand-Binding Flavoprotein Dodecin as a Key Element for Reversible Surface Modification in Nano-biotechnology.
Gutierrez Sanchez C, Su Q, Schonherr H, Grininger M, Noll G., ACS Nano 9(4), 2015
PMID: 25738566
Re-annotation of the genome sequence of Mycobacterium tuberculosis H37Rv.
Camus JC, Pryor MJ, Medigue C, Cole ST., Microbiology (Reading, Engl.) 148(Pt 10), 2002
PMID: 12368430
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 29856311
PubMed | Europe PMC

Suchen in

Google Scholar