Metabolic survey of Botryococcus braunii: Impact of the physiological state on product formation

Blifernez-Klassen O, Chaudhari S, Klassen V, Wördenweber R, Steffens T, Cholewa D, Niehaus K, Kalinowski J, Kruse O (2018)
PLOS ONE 13(6): e0198976.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 5.29 MB
Abstract / Bemerkung
The microalga Botryococcus braunii is widely regarded as a potential renewable and sustainable source for industrial applications because of its capability to produce large amounts of metabolically expensive (exo-) polysaccharides and lipids, notably hydrocarbons. A comprehensive and systematic metabolic characterization of the Botryococcus braunii race A strain CCAP 807/2 was conducted within the present study, including the detailed analysis of growth-associated and physiological parameters. In addition, the intracellular metabolome was profiled for the first time and showed growth- and product-specific fluctuations in response to the different availability of medium resources during the cultivation course. Among the identified metabolites, a constant expression of raffinose was observed for the first time under standard conditions, which has until now only been described for higher plants. Overall, the multilayered analysis during the cultivation of strain CCAP 807/2 allowed the differentiation of four distinct physiological growth phases and revealed differences in the production profiles and content of liquid hydrocarbons and carbohydrates with up to 84% of organic dry weight (oDW). In the process, an enhanced production of carbohydrates with up to 63% of oDW (1.36 +/- 0.03 g L-1) could be observed during the late linear growth phase, whereas the highest accumulation of extracellular hydrocarbons with up to 24% of oDW (0.66 +/- 0.12 g L-1) occurred mainly during the stationary growth phase. Altogether, the knowledge obtained is potentially useful for the general understanding of the overall physiology of Botryococcus braunii and provide important insights into the growth behavior and product formation of this microalga, and is thus relevant for large scale biofuel production and industrial applications.
Erscheinungsjahr
2018
Zeitschriftentitel
PLOS ONE
Band
13
Ausgabe
6
Art.-Nr.
e0198976
ISSN
1932-6203
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Deutsche Forschungsgemeinschaft und die Universität Bielefeld gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2920943

Zitieren

Blifernez-Klassen O, Chaudhari S, Klassen V, et al. Metabolic survey of Botryococcus braunii: Impact of the physiological state on product formation. PLOS ONE. 2018;13(6): e0198976.
Blifernez-Klassen, O., Chaudhari, S., Klassen, V., Wördenweber, R., Steffens, T., Cholewa, D., Niehaus, K., et al. (2018). Metabolic survey of Botryococcus braunii: Impact of the physiological state on product formation. PLOS ONE, 13(6), e0198976. doi:10.1371/journal.pone.0198976
Blifernez-Klassen, Olga, Chaudhari, Swapnil, Klassen, Viktor, Wördenweber, Robin, Steffens, Tim, Cholewa, Dominik, Niehaus, Karsten, Kalinowski, Jörn, and Kruse, Olaf. 2018. “Metabolic survey of Botryococcus braunii: Impact of the physiological state on product formation”. PLOS ONE 13 (6): e0198976.
Blifernez-Klassen, O., Chaudhari, S., Klassen, V., Wördenweber, R., Steffens, T., Cholewa, D., Niehaus, K., Kalinowski, J., and Kruse, O. (2018). Metabolic survey of Botryococcus braunii: Impact of the physiological state on product formation. PLOS ONE 13:e0198976.
Blifernez-Klassen, O., et al., 2018. Metabolic survey of Botryococcus braunii: Impact of the physiological state on product formation. PLOS ONE, 13(6): e0198976.
O. Blifernez-Klassen, et al., “Metabolic survey of Botryococcus braunii: Impact of the physiological state on product formation”, PLOS ONE, vol. 13, 2018, : e0198976.
Blifernez-Klassen, O., Chaudhari, S., Klassen, V., Wördenweber, R., Steffens, T., Cholewa, D., Niehaus, K., Kalinowski, J., Kruse, O.: Metabolic survey of Botryococcus braunii: Impact of the physiological state on product formation. PLOS ONE. 13, : e0198976 (2018).
Blifernez-Klassen, Olga, Chaudhari, Swapnil, Klassen, Viktor, Wördenweber, Robin, Steffens, Tim, Cholewa, Dominik, Niehaus, Karsten, Kalinowski, Jörn, and Kruse, Olaf. “Metabolic survey of Botryococcus braunii: Impact of the physiological state on product formation”. PLOS ONE 13.6 (2018): e0198976.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:59Z
MD5 Prüfsumme
8eb7096f028ae5670e937c25bfa3ffe7


Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

74 References

Daten bereitgestellt von Europe PubMed Central.

Exploiting diversity and synthetic biology for the production of algal biofuels.
Georgianna DR, Mayfield SP., Nature 488(7411), 2012
PMID: 22895338
The Algal Revolution.
Brodie J, Chan CX, De Clerck O, Cock JM, Coelho SM, Gachon C, Grossman AR, Mock T, Raven JA, Smith AG, Yoon HS, Bhattacharya D., Trends Plant Sci. 22(8), 2017
PMID: 28610890
Botryococcus braunii: a renewable source of hydrocarbons and other chemicals.
Banerjee A, Sharma R, Chisti Y, Banerjee UC., Crit. Rev. Biotechnol. 22(3), 2002
PMID: 12405558

AUTHOR UNKNOWN, 1999
Botryococcus braunii: a rich source for hydrocarbons and related ether lipids.
Metzger P, Largeau C., Appl. Microbiol. Biotechnol. 66(5), 2004
PMID: 15630516

AUTHOR UNKNOWN, 2013
Biofuels from algae: challenges and potential.
Hannon M, Gimpel J, Tran M, Rasala B, Mayfield S., Biofuels 1(5), 2010
PMID: 21833344
Colony organization in the green alga Botryococcus braunii (Race B) is specified by a complex extracellular matrix.
Weiss TL, Roth R, Goodson C, Vitha S, Black I, Azadi P, Rusch J, Holzenburg A, Devarenne TP, Goodenough U., Eukaryotic Cell 11(12), 2012
PMID: 22941913

AUTHOR UNKNOWN, 2017
An n-alkatriene and some n-alkadienes from the A race of the green alga Botryococcus braunii
AUTHOR UNKNOWN, 1986
Mechanism of non-isoprenoid hydrocarbon biosynthesis in Botryococcus braunii
AUTHOR UNKNOWN, 1984
Biosynthesis non-isoprenoid hydrocarbons the microalga Botryococcus braunii: evidence for elongation decarboxylation mechanism; activation decarboxylation
AUTHOR UNKNOWN, 1986
Alkadiene- and botryococcene-producing races of wild strains of Botryococcus braunii
AUTHOR UNKNOWN, 1985
Structure and chemistry of a new chemical race of Botryococcus braunii (Chlorophyceae) that produced lycopadiene, a tetraterpenoid hydrocarbon
AUTHOR UNKNOWN, 1990
Relationship between hydrocarbons and molecular phylogeny of Botryococcus braunii
AUTHOR UNKNOWN, 2012
The biosynthesis of long-chain hydrocarbons in the green alga Botryococcus braunii
AUTHOR UNKNOWN, 1980
Active hydrocarbon biosynthesis and accumulation in a green alga, Botryococcus braunii (race A).
Hirose M, Mukaida F, Okada S, Noguchi T., Eukaryotic Cell 12(8), 2013
PMID: 23794509
Sites of accumulation and composition of hydrocarbons in Botryococcus braunii
AUTHOR UNKNOWN, 1980

AUTHOR UNKNOWN, 1991
Effect of nutrient supply status on biomass composition of eukaryotic green microalgae
AUTHOR UNKNOWN, 2014
Autotrophic cultivation of Botryococcus braunii for the production of hydrocarbons and exopolysaccharides in various media
AUTHOR UNKNOWN, 2007
Biosynthesis of high concentrations of an exopolysaccharide during the cultivation of the microalga Botryococcus braunii
AUTHOR UNKNOWN, 1989
Characteristics of extracellular hydrocarbon-rich microalga Botryococcus braunii for biofuels production: Recent advances and opportunities
AUTHOR UNKNOWN, 2016
Extractable liquid, its energy and hydrocarbon content in the green alga Botryococcus braunii
AUTHOR UNKNOWN, 2013
Botryococcus braunii strains compared for biomass productivity, hydrocarbon and carbohydrate content.
Gouveia JD, Ruiz J, van den Broek LAM, Hesselink T, Peters S, Kleinegris DMM, Smith AG, van der Veen D, Barbosa MJ, Wijffels RH., J. Biotechnol. 248(), 2017
PMID: 28336295
Non-destructive oil extraction from Botryococcus braunii (Chlorophyta)
AUTHOR UNKNOWN, 2013
Development of a screening procedure for the characterization of Botryococcus braunii strains for biofuel application
AUTHOR UNKNOWN, 2016
The Cinderella story of metabolic profiling: does metabolomics get to go to the functional genomics ball?
Griffin JL., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 361(1465), 2006
PMID: 16553314
Anaerobic co-digestion of pig manure and crude glycerol at mesophilic conditions: biogas and digestate.
Astals S, Nolla-Ardevol V, Mata-Alvarez J., Bioresour. Technol. 110(), 2012
PMID: 22341889
The Spectral Determination of Chlorophylls a and b, as well as Total Carotenoids, Using Various Solvents with Spectrophotometers of Different Resolution
AUTHOR UNKNOWN, 1994
The interplay of proton, electron, and metabolite supply for photosynthetic H2 production in Chlamydomonas reinhardtii.
Doebbe A, Keck M, La Russa M, Mussgnug JH, Hankamer B, Tekce E, Niehaus K, Kruse O., J. Biol. Chem. 285(39), 2010
PMID: 20581114
Identification of Monoraphidium contortum as a promising species for liquid biofuel production.
Bogen C, Klassen V, Wichmann J, La Russa M, Doebbe A, Grundmann M, Uronen P, Kruse O, Mussgnug JH., Bioresour. Technol. 133(), 2013
PMID: 23453981
A simple method for the isolation and purification of total lipides from animal tissues.
FOLCH J, LEES M, SLOANE STANLEY GH., J. Biol. Chem. 226(1), 1957
PMID: 13428781
Inhibition of starch synthesis results in overproduction of lipids in Chlamydomonas reinhardtii.
Li Y, Han D, Hu G, Sommerfeld M, Hu Q., Biotechnol. Bioeng. 107(2), 2010
PMID: 20506159
Hydrocarbon production in high density Botryococcus braunii race B continuous culture.
Khatri W, Hendrix R, Niehaus T, Chappell J, Curtis WR., Biotechnol. Bioeng. 111(3), 2013
PMID: 24122424
Dependency of the fatty acid composition of Euglena gracilis on growth phase and culture conditions
AUTHOR UNKNOWN, 2014
Colorimetric method for determination of sugars and related substances
AUTHOR UNKNOWN, 1956
The influence of a modified lipopolysaccharide O-antigen on the biosynthesis of xanthan in Xanthomonas campestris pv. campestris B100.
Steffens T, Vorholter FJ, Giampa M, Hublik G, Puhler A, Niehaus K., BMC Microbiol. 16(), 2016
PMID: 27215401
Micro-algae as a source of protein.
Becker EW., Biotechnol. Adv. 25(2), 2006
PMID: 17196357
A novel one-stage cultivation/fermentation strategy for improved biogas production with microalgal biomass.
Klassen V, Blifernez-Klassen O, Hoekzema Y, Mussgnug JH, Kruse O., J. Biotechnol. 215(), 2015
PMID: 26022425
Highly efficient methane generation from untreated microalgae biomass.
Klassen V, Blifernez-Klassen O, Wibberg D, Winkler A, Kalinowski J, Posten C, Kruse O., Biotechnol Biofuels 10(), 2017
PMID: 28725266
Sucrose and the integration of metabolism in vascular plants
AUTHOR UNKNOWN, 2000

AUTHOR UNKNOWN, 1997
Effect of trehalose on protein structure.
Jain NK, Roy I., Protein Sci. 18(1), 2009
PMID: 19177348
Significance of galactinol and raffinose family oligosaccharide synthesis in plants.
Sengupta S, Mukherjee S, Basak P, Majumder AL., Front Plant Sci 6(), 2015
PMID: 26379684
Reduced inositol content and altered morphology in transgenic potato plants inhibited for 1D‐myo‐inositol 3‐phosphate synthase
AUTHOR UNKNOWN, 1998
Raffinose Synthesis in Chlorella vulgaris Cultures after a Cold Shock.
Salerno GL, Pontis HG., Plant Physiol. 89(2), 1989
PMID: 16666596
Galactofuranose in eukaryotes: aspects of biosynthesis and functional impact.
Tefsen B, Ram AF, van Die I, Routier FH., Glycobiology 22(4), 2011
PMID: 21940757
Carbon flux and fatty acid synthesis in plants.
Rawsthorne S., Prog. Lipid Res. 41(2), 2002
PMID: 11755683
myo-Inositol metabolism in plants
AUTHOR UNKNOWN, 2000
Glutamine and glutamate--their central role in cell metabolism and function.
Newsholme P, Procopio J, Lima MM, Pithon-Curi TC, Curi R., Cell Biochem. Funct. 21(1), 2003
PMID: 12579515
Glutamate in plants: metabolism, regulation, and signalling.
Forde BG, Lea PJ., J. Exp. Bot. 58(9), 2007
PMID: 17578865
Enzymatic and metabolic diagnostic of nitrogen deficiency in Arabidopsis thaliana Wassileskija accession.
Lemaitre T, Gaufichon L, Boutet-Mercey S, Christ A, Masclaux-Daubresse C., Plant Cell Physiol. 49(7), 2008
PMID: 18508804
Nitrogen-dependent regulation of photosynthetic gene expression.
Plumley FG, Schmidt GW., Proc. Natl. Acad. Sci. U.S.A. 86(8), 1989
PMID: 16594026
Metabolome analysis reveals ethanolamine as potential marker for improving lipid accumulation of model photosynthetic organisms
AUTHOR UNKNOWN, 2012
Hydrocarbon phenotyping of algal species using pyrolysis-gas chromatography mass spectrometry.
Barupal DK, Kind T, Kothari SL, Lee DY, Fiehn O., BMC Biotechnol. 10(), 2010
PMID: 20492649
Plant sterols and the membrane environment
AUTHOR UNKNOWN, 1998
Sterols of freshwater microalgae: potential implications for zooplankton nutrition
AUTHOR UNKNOWN, 2016
Primary and secondary carotenoids in two races of the green alga Botryococcus braunii
AUTHOR UNKNOWN, 1989
Studies on the formation and localization of primary and secondary carotenoids in the green alga Botryococcus braunii, including the regreening process
AUTHOR UNKNOWN, 1994
Pigment composition of the green microalga Botryococcus braunii Kawaguchi-1
AUTHOR UNKNOWN, 1998
Lipid compositon of green alga Botryococcus braunii
AUTHOR UNKNOWN, 1987
Influence of nitrogen source and photoperiod on exopolysaccharide synthesis by the microalga Botryococcus braunii UC 58
AUTHOR UNKNOWN, 1994
Carbohydrate composition and characterization of sugars from the green microalga Botryococcus Braunii
AUTHOR UNKNOWN, 1990
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 29879215
PubMed | Europe PMC

Suchen in

Google Scholar