Computational Models of Miscommunication Phenomena
Purver M, Hough J, Howes C (2018)
TOPICS IN COGNITIVE SCIENCE 10(2): 425-451.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Purver, Matthew;
Hough, JulianUniBi;
Howes, Christine
Abstract / Bemerkung
Miscommunication phenomena such as repair in dialogue are important indicators of the quality of communication. Automatic detection is therefore a key step toward tools that can characterize communication quality and thus help in applications from call center management to mental health monitoring. However, most existing computational linguistic approaches to these phenomena are unsuitable for general use in this way, and particularly for analyzing human-human dialogue: Although models of other-repair are common in human-computer dialogue systems, they tend to focus on specific phenomena (e.g., repair initiation by systems), missing the range of repair and repair initiation forms used by humans; and while self-repair models for speech recognition and understanding are advanced, they tend to focus on removal of disfluent material important for full understanding of the discourse contribution, and/or rely on domain-specific knowledge. We explain the requirements for more satisfactory models, including incrementality of processing and robustness to sparsity. We then describe models for self- and other-repair detection that meet these requirements (for the former, an adaptation of an existing repair model; for the latter, an adaptation of standard techniques) and investigate how they perform on datasets from a range of dialogue genres and domains, with promising results. Purver, et al. note that most models of repair in dialogue tend to focus on the system initiating repair, but are not able to detect repair initiated by humans. They develop a repair detection model based on strict incrementalism and parallelism, detecting the match between the turn that is repaired and the turn that is doing the repairing. Their model achieves state-of-the-art performance on most corpora of spoken English.
Stichworte
Miscommunication;
Dialogue;
Repair;
Disfluency;
Incrementality;
Parallelism;
Sparsity
Erscheinungsjahr
2018
Zeitschriftentitel
TOPICS IN COGNITIVE SCIENCE
Band
10
Ausgabe
2
Seite(n)
425-451
Urheberrecht / Lizenzen
ISSN
1756-8757
eISSN
1756-8765
Page URI
https://pub.uni-bielefeld.de/record/2920335
Zitieren
Purver M, Hough J, Howes C. Computational Models of Miscommunication Phenomena. TOPICS IN COGNITIVE SCIENCE. 2018;10(2):425-451.
Purver, M., Hough, J., & Howes, C. (2018). Computational Models of Miscommunication Phenomena. TOPICS IN COGNITIVE SCIENCE, 10(2), 425-451. doi:10.1111/tops.12324
Purver, Matthew, Hough, Julian, and Howes, Christine. 2018. “Computational Models of Miscommunication Phenomena”. TOPICS IN COGNITIVE SCIENCE 10 (2): 425-451.
Purver, M., Hough, J., and Howes, C. (2018). Computational Models of Miscommunication Phenomena. TOPICS IN COGNITIVE SCIENCE 10, 425-451.
Purver, M., Hough, J., & Howes, C., 2018. Computational Models of Miscommunication Phenomena. TOPICS IN COGNITIVE SCIENCE, 10(2), p 425-451.
M. Purver, J. Hough, and C. Howes, “Computational Models of Miscommunication Phenomena”, TOPICS IN COGNITIVE SCIENCE, vol. 10, 2018, pp. 425-451.
Purver, M., Hough, J., Howes, C.: Computational Models of Miscommunication Phenomena. TOPICS IN COGNITIVE SCIENCE. 10, 425-451 (2018).
Purver, Matthew, Hough, Julian, and Howes, Christine. “Computational Models of Miscommunication Phenomena”. TOPICS IN COGNITIVE SCIENCE 10.2 (2018): 425-451.
Daten bereitgestellt von European Bioinformatics Institute (EBI)
1 Zitation in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
Editors' Introduction: Miscommunication.
Healey PGT, de Ruiter JP, Mills GJ., Top Cogn Sci 10(2), 2018
PMID: 29749040
Healey PGT, de Ruiter JP, Mills GJ., Top Cogn Sci 10(2), 2018
PMID: 29749040
73 References
Daten bereitgestellt von Europe PubMed Central.
The HCRC map task data
Anderson, Language and Speech 34(4), 1991
Anderson, Language and Speech 34(4), 1991
AUTHOR UNKNOWN, 0
Disfluency rates in conversation: effects of age, relationship, topic, role, and gender.
Bortfeld H, Leon SD, Bloom JE, Schober MF, Brennan SE., Lang Speech 44(Pt 2), 2001
PMID: 11575901
Bortfeld H, Leon SD, Bloom JE, Schober MF, Brennan SE., Lang Speech 44(Pt 2), 2001
PMID: 11575901
How listeners compensate for disfluencies in spontaneous speech
Brennan, Journal of Memory and Language 44(2), 2001
Brennan, Journal of Memory and Language 44(2), 2001
Burnard, 2000
Clark, 2013
Clark, 1996
Colman, 2011
Universal Principles in the Repair of Communication Problems.
Dingemanse M, Roberts SG, Baranova J, Blythe J, Drew P, Floyd S, Gisladottir RS, Kendrick KH, Levinson SC, Manrique E, Rossi G, Enfield NJ., PLoS ONE 10(9), 2015
PMID: 26375483
Dingemanse M, Roberts SG, Baranova J, Blythe J, Drew P, Floyd S, Gisladottir RS, Kendrick KH, Levinson SC, Manrique E, Rossi G, Enfield NJ., PLoS ONE 10(9), 2015
PMID: 26375483
Is "huh?" a universal word? Conversational infrastructure and the convergent evolution of linguistic items.
Dingemanse M, Torreira F, Enfield NJ., PLoS ONE 8(11), 2013
PMID: 24260108
Dingemanse M, Torreira F, Enfield NJ., PLoS ONE 8(11), 2013
PMID: 24260108
Classifying ellipsis in dialogue: A machine learning approach
Fernández, Computational Linguistics 33(3), 2007
Fernández, Computational Linguistics 33(3), 2007
Disfluencies, language comprehension, and tree adjoining grammars
Ferreira, Cognitive Science 28(5), 2004
Ferreira, Cognitive Science 28(5), 2004
Clarification, ellipsis, and the nature of contextual updates in dialogue
Ginzburg, Linguistics and Philosophy 27(3), 2004
Ginzburg, Linguistics and Philosophy 27(3), 2004
Ginzburg, 2007
Godfrey, 1992
Goodwin, 1979
Gravano, 2009
Healey, 2005
Healey, 2013
Healey, 2015
Hjalmarsson, 2012
Joint incremental disfluency detection and dependency parsing
Honnibal, Transactions of the Association of Computational Linguistics (TACL) 2(), 2014
Honnibal, Transactions of the Association of Computational Linguistics (TACL) 2(), 2014
Hough, 2015
Hough, 2012
Hough, 2013
Hough, 2014
AUTHOR UNKNOWN, 0
Howes, 2014
Howes, 2017
On incrementality in dialogue: Evidence from compound contributions
Howes, Dialogue & Discourse 2(1), 2011
Howes, Dialogue & Discourse 2(1), 2011
Howes, 2012
Johnson, 2004
AUTHOR UNKNOWN, 0
Detection and recognition of correction utterances on misrecognition 721 of spoken dialog system
Kitaoka, Systems and Computers in Japan 36(11), 2005
Kitaoka, Systems and Computers in Japan 36(11), 2005
Listener vs. speaker-oriented aspects of speech: studying the disfluencies of individuals with autism spectrum disorders.
Lake JK, Humphreys KR, Cardy S., Psychon Bull Rev 18(1), 2011
PMID: 21327345
Lake JK, Humphreys KR, Cardy S., Psychon Bull Rev 18(1), 2011
PMID: 21327345
Recognizing disfluencies in conversational speech
Lease, Audio, Speech, and Language Processing, IEEE Transactions on 14(5), 2006
Lease, Audio, Speech, and Language Processing, IEEE Transactions on 14(5), 2006
Multithreaded context for robust conversational interfaces: Context-sensitive speech recognition and interpretation of corrective fragments
Lemon, ACM Transactions on Computer-Human Interaction 11(3), 2004
Lemon, ACM Transactions on Computer-Human Interaction 11(3), 2004
Self-repair in dialogues of schizophrenics: effects of hallucinations and negative symptoms.
Leudar I, Thomas P, Johnston M., Brain Lang 43(3), 1992
PMID: 1446215
Leudar I, Thomas P, Johnston M., Brain Lang 43(3), 1992
PMID: 1446215
Levelt, 1989
Lickley, 2001
Characterizing and predicting corrections in spoken dialogue systems
Litman, Computational Linguistics 32(3), 2006
Litman, Computational Linguistics 32(3), 2006
Lopes, 2015
AUTHOR UNKNOWN, 0
Shared understanding in psychiatrist-patient communication: association with treatment adherence in schizophrenia.
McCabe R, Healey PG, Priebe S, Lavelle M, Dodwell D, Laugharne R, Snell A, Bremner S., Patient Educ Couns 93(1), 2013
PMID: 23856552
McCabe R, Healey PG, Priebe S, Lavelle M, Dodwell D, Laugharne R, Snell A, Bremner S., Patient Educ Couns 93(1), 2013
PMID: 23856552
AUTHOR UNKNOWN, 0
Mieskes, 2006
Mikolov, 2013
Mills, 2013
Mills, 2006
Doctor-patient communication: a review of the literature.
Ong LM, de Haes JC, Hoos AM, Lammes FB., Soc Sci Med 40(7), 1995
PMID: 7792630
Ong LM, de Haes JC, Hoos AM, Lammes FB., Soc Sci Med 40(7), 1995
PMID: 7792630
Predicting spoken disfluencies during human-computer interaction
Oviatt, Computer Speech & Language 9(1), 1995
Oviatt, Computer Speech & Language 9(1), 1995
Purver, 2003
Rasooli, 2014
Raux, 2005
Rieser, 2005
Rodríguez, 2004
The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets.
Saito T, Rehmsmeier M., PLoS ONE 10(3), 2015
PMID: 25738806
Saito T, Rehmsmeier M., PLoS ONE 10(3), 2015
PMID: 25738806
San-Segundo, 2001
The preference for self-correction in the organization of repair in conversation
Schegloff, Language 53(2), 1977
Schegloff, Language 53(2), 1977
Schlangen, 2005
Shriberg, 1994
Skantze, 2010
A coding scheme for question-response sequences in conversation
Stivers, Journal of Pragmatics 42(10), 2010
Stivers, Journal of Pragmatics 42(10), 2010
Dialogue act modeling for automatic tagging and recognition of conversational speech
Stolcke, Computational Linguistics 26(3), 2000
Stolcke, Computational Linguistics 26(3), 2000
AUTHOR UNKNOWN, 0
Concept type prediction and responsive adaptation in a dialogue system
Stoyanchev, Dialogue & Discourse 3(1), 2012
Stoyanchev, Dialogue & Discourse 3(1), 2012
Surendran, 2006
Toutanova, 2003
Turian, 2010
Weng, 2007
POMDP-based statistical spoken dialog systems: A review
Young, Proceedings of the IEEE 101(5), 2013
Young, Proceedings of the IEEE 101(5), 2013
Zwarts, 2010
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 29517153
PubMed | Europe PMC
Suchen in