Catalytically active inclusion bodies of L-lysine decarboxylase from E. coli for 1,5-diaminopentane production

Kloss R, Limberg MH, Mackfeld U, Hahn D, Grünberger A, Jaeger VD, Krauss U, Oldiges M, Pohl M (2018)
SCIENTIFIC REPORTS 8(1): 5856.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Kloss, Ramona; Limberg, Michael H.; Mackfeld, Ursula; Hahn, Doris; Grünberger, AlexanderUniBi; Jaeger, Vera D.; Krauss, Ulrich; Oldiges, Marco; Pohl, Martina
Abstract / Bemerkung
Sustainable and eco-efficient alternatives for the production of platform chemicals, fuels and chemical building blocks require the development of stable, reusable and recyclable biocatalysts. Here we present a novel concept for the biocatalytic production of 1,5-diaminopentane (DAP, trivial name: cadaverine) using catalytically active inclusion bodies (CatIBs) of the constitutive L-lysine decarboxylase from E. coli (EcLDCc-CatIBs) to process L-lysine-containing culture supernatants from Corynebacterium glutamicum. EcLDCc-CatIBs can easily be produced in E. coli followed by a simple purification protocol yielding up to 43% dry CatIBs per dry cell weight. The stability and recyclability of EcLDCc-CatIBs was demonstrated in (repetitive) batch experiments starting from L-lysine concentrations of 0.1 M and 1 M. EcLDC-CatIBs exhibited great stability under reaction conditions with an estimated half-life of about 54 h. High conversions to DAP of 87-100% were obtained in 30-60 ml batch reactions using approx. 180-300 mg EcLDCc-CatIBs, respectively. This resulted in DAP titres of up to 88.4 g l(-1) and space-time yields of up to 660 gDAP l(-1) d(-1) per gram dry EcLDCc-CatIBs. The new process for DAP production can therefore compete with the currently best fermentative process as described in the literature.
Erscheinungsjahr
2018
Zeitschriftentitel
SCIENTIFIC REPORTS
Band
8
Ausgabe
1
Art.-Nr.
5856
ISSN
2045-2322
Page URI
https://pub.uni-bielefeld.de/record/2920273

Zitieren

Kloss R, Limberg MH, Mackfeld U, et al. Catalytically active inclusion bodies of L-lysine decarboxylase from E. coli for 1,5-diaminopentane production. SCIENTIFIC REPORTS. 2018;8(1): 5856.
Kloss, R., Limberg, M. H., Mackfeld, U., Hahn, D., Grünberger, A., Jaeger, V. D., Krauss, U., et al. (2018). Catalytically active inclusion bodies of L-lysine decarboxylase from E. coli for 1,5-diaminopentane production. SCIENTIFIC REPORTS, 8(1), 5856. doi:10.1038/s41598-018-24070-2
Kloss, Ramona, Limberg, Michael H., Mackfeld, Ursula, Hahn, Doris, Grünberger, Alexander, Jaeger, Vera D., Krauss, Ulrich, Oldiges, Marco, and Pohl, Martina. 2018. “Catalytically active inclusion bodies of L-lysine decarboxylase from E. coli for 1,5-diaminopentane production”. SCIENTIFIC REPORTS 8 (1): 5856.
Kloss, R., Limberg, M. H., Mackfeld, U., Hahn, D., Grünberger, A., Jaeger, V. D., Krauss, U., Oldiges, M., and Pohl, M. (2018). Catalytically active inclusion bodies of L-lysine decarboxylase from E. coli for 1,5-diaminopentane production. SCIENTIFIC REPORTS 8:5856.
Kloss, R., et al., 2018. Catalytically active inclusion bodies of L-lysine decarboxylase from E. coli for 1,5-diaminopentane production. SCIENTIFIC REPORTS, 8(1): 5856.
R. Kloss, et al., “Catalytically active inclusion bodies of L-lysine decarboxylase from E. coli for 1,5-diaminopentane production”, SCIENTIFIC REPORTS, vol. 8, 2018, : 5856.
Kloss, R., Limberg, M.H., Mackfeld, U., Hahn, D., Grünberger, A., Jaeger, V.D., Krauss, U., Oldiges, M., Pohl, M.: Catalytically active inclusion bodies of L-lysine decarboxylase from E. coli for 1,5-diaminopentane production. SCIENTIFIC REPORTS. 8, : 5856 (2018).
Kloss, Ramona, Limberg, Michael H., Mackfeld, Ursula, Hahn, Doris, Grünberger, Alexander, Jaeger, Vera D., Krauss, Ulrich, Oldiges, Marco, and Pohl, Martina. “Catalytically active inclusion bodies of L-lysine decarboxylase from E. coli for 1,5-diaminopentane production”. SCIENTIFIC REPORTS 8.1 (2018): 5856.

1 Zitation in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Tailoring the properties of (catalytically)-active inclusion bodies.
Jäger VD, Kloss R, Grünberger A, Seide S, Hahn D, Karmainski T, Piqueray M, Embruch J, Longerich S, Mackfeld U, Jaeger KE, Wiechert W, Pohl M, Krauss U., Microb Cell Fact 18(1), 2019
PMID: 30732596

74 References

Daten bereitgestellt von Europe PubMed Central.

Fossil-fueled development (SSP5): An energy and resource intensive scenario for the 21st century
Kriegler E., 2017

AUTHOR UNKNOWN, 0
Identical, independent, and opposing roles of ppGpp and DksA in Escherichia coli.
Magnusson LU, Gummesson B, Joksimovic P, Farewell A, Nystrom T., J. Bacteriol. 189(14), 2007
PMID: 17496080
Bio-based production of monomers and polymers by metabolically engineered microorganisms.
Chung H, Yang JE, Ha JY, Chae TU, Shin JH, Gustavsson M, Lee SY., Curr. Opin. Biotechnol. 36(), 2015
PMID: 26318077
Perspective on opportunities in industrial biotechnology in renewable chemicals.
Erickson B, Nelson , Winters P., Biotechnol J 7(2), 2011
PMID: 21932250
Synthesis of nylon 4 from gamma-aminobutyrate (GABA) produced by recombinant Escherichia coli.
Park SJ, Kim EY, Noh W, Oh YH, Kim HY, Song BK, Cho KM, Hong SH, Lee SH, Jegal J., Bioprocess Biosyst Eng 36(7), 2012
PMID: 23010721
Microbial production of short chain diols.
Jiang Y, Liu W, Zou H, Cheng T, Tian N, Xian M., Microb. Cell Fact. 13(), 2014
PMID: 25491899
Advances in cadaverine bacterial production and its applications
Ma W., 2017
Metabolic engineering of Saccharomyces cerevisiae for the biotechnological production of succinic acid.
Raab AM, Gebhardt G, Bolotina N, Weuster-Botz D, Lang C., Metab. Eng. 12(6), 2010
PMID: 20854924
Succinate production in Escherichia coli.
Thakker C, Martinez I, San KY, Bennett GN., Biotechnol J 7(2), 2011
PMID: 21932253
Engineering nonphosphorylative metabolism to generate lignocellulose-derived products.
Tai YS, Xiong M, Jambunathan P, Wang J, Wang J, Stapleton C, Zhang K., Nat. Chem. Biol. 12(4), 2016
PMID: 26854668
Dual synthetic pathway for 3-hydroxypropionic acid production in engineered Escherichia coli.
Honjo H, Tsuruno K, Tatsuke T, Sato M, Hanai T., J. Biosci. Bioeng. 120(2), 2015
PMID: 25650075
An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain.
Okino S, Noburyu R, Suda M, Jojima T, Inui M, Yukawa H., Appl. Microbiol. Biotechnol. 81(3), 2008
PMID: 18777022
Castor oil: a vital industrial raw material.
Ogunniyi DS., Bioresour. Technol. 97(9), 2006
PMID: 15919203
Bio-polyamides for automotive applications
Thielen M., 2010
Metabolic engineering of Corynebacterium glutamicum for cadaverine fermentation.
Mimitsuka T, Sawai H, Hatsu M, Yamada K., Biosci. Biotechnol. Biochem. 71(9), 2007
PMID: 17895539
From zero to hero--design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production.
Becker J, Zelder O, Hafner S, Schroder H, Wittmann C., Metab. Eng. 13(2), 2011
PMID: 21241816
From zero to hero - production of bio-based nylon from renewable resources using engineered Corynebacterium glutamicum.
Kind S, Neubauer S, Becker J, Yamamoto M, Volkert M, Abendroth Gv, Zelder O, Wittmann C., Metab. Eng. 25(), 2014
PMID: 24831706
A giant market and a powerful metabolism: L-lysine provided by Corynebacterium glutamicum.
Eggeling L, Bott M., Appl. Microbiol. Biotechnol. 99(8), 2015
PMID: 25761623
Development of engineered Escherichia coli whole-cell biocatalysts for high-level conversion of L-lysine into cadaverine.
Oh YH, Kang KH, Kwon MJ, Choi JW, Joo JC, Lee SH, Yang YH, Song BK, Kim IK, Yoon KH, Park K, Park SJ., J. Ind. Microbiol. Biotechnol. 42(11), 2015
PMID: 26364199
Construction of Escherichia Coli Cell Factories for Production of Organic Acids and Alcohols.
Liu P, Zhu X, Tan Z, Zhang X, Ma Y., Adv. Biochem. Eng. Biotechnol. 155(), 2016
PMID: 25577396
Functional Study of Lysine Decarboxylases from Klebsiella pneumoniae in Escherichia coli and Application of Whole Cell Bioconversion for Cadaverine Production.
Kim JH, Kim HJ, Kim YH, Jeon JM, Song HS, Kim J, No SY, Shin JH, Choi KY, Park KM, Yang YH., J. Microbiol. Biotechnol. 26(9), 2016
PMID: 27291676
Optimization of Direct Lysine Decarboxylase Biotransformation for Cadaverine Production with Whole-Cell Biocatalysts at High Lysine Concentration.
Kim HJ, Kim YH, Shin JH, Bhatia SK, Sathiyanarayanan G, Seo HM, Choi KY, Yang YH, Park K., J. Microbiol. Biotechnol. 25(7), 2015
PMID: 25674800
The Escherichia coli ldcC gene encodes another lysine decarboxylase, probably a constitutive enzyme.
Yamamoto Y, Miwa Y, Miyoshi K, Furuyama J, Ohmori H., Genes Genet. Syst. 72(3), 1997
PMID: 9339543
Formation of a distinctive complex between the inducible bacterial lysine decarboxylase and a novel AAA+ ATPase.
Snider J, Gutsche I, Lin M, Baby S, Cox B, Butland G, Greenblatt J, Emili A, Houry WA., J. Biol. Chem. 281(3), 2005
PMID: 16301313
Structural insights into the Escherichia coli lysine decarboxylases and molecular determinants of interaction with the AAA+ ATPase RavA.
Kandiah E, Carriel D, Perard J, Malet H, Bacia M, Liu K, Chan SW, Houry WA, Ollagnier de Choudens S, Elsen S, Gutsche I., Sci Rep 6(), 2016
PMID: 27080013
Linkage between the bacterial acid stress and stringent responses: the structure of the inducible lysine decarboxylase.
Kanjee U, Gutsche I, Alexopoulos E, Zhao B, El Bakkouri M, Thibault G, Liu K, Ramachandran S, Snider J, Pai EF, Houry WA., EMBO J. 30(5), 2011
PMID: 21278708
Enhanced cadaverine production from L-lysine using recombinant Escherichia coli co-overexpressing CadA and CadB.
Ma W, Cao W, Zhang H, Chen K, Li Y, Ouyang P., Biotechnol. Lett. 37(4), 2014
PMID: 25515797
Improving the secretion of cadaverine in Corynebacterium glutamicum by cadaverine-lysine antiporter.
Li M, Li D, Huang Y, Liu M, Wang H, Tang Q, Lu F., J. Ind. Microbiol. Biotechnol. 41(4), 2014
PMID: 24510022
Cadaverine production by heterologous expression of Klebsiella oxytoca lysine decarboxylase
Li N, Chou H, Yu L, Xu Y., 2014
Biotransformation of lysine into cadaverine using barium alginate-immobilized Escherichia coli overexpressing CadA.
Bhatia SK, Kim YH, Kim HJ, Seo HM, Kim JH, Song HS, Sathiyanarayanan G, Park SH, Park K, Yang YH., Bioprocess Biosyst Eng 38(12), 2015
PMID: 26314400
Development of a continuous L-lysine bioconversion system for cadaverine production
Kim J-H., 2016
In situ immobilization of lysine decarboxylase on a biopolymer by fusion with phasin: Immobilization of CadA on intracellular PHA
Seo HM., 2016
Cadaverine Production by Using Cross-Linked Enzyme Aggregate of Escherichia coli Lysine Decarboxylase.
Park SH, Soetyono F, Kim HK., J. Microbiol. Biotechnol. 27(2), 2017
PMID: 27780956
A crosslinked inclusion body process for sialic acid synthesis.
Nahalka J, Vikartovska A, Hrabarova E., J. Biotechnol. 134(1-2), 2008
PMID: 18313163
Enzyme Immobilization: The Quest for Optimum Performance
Sheldon RA., 2007
Strategies for the one-step immobilization-purification of enzymes as industrial biocatalysts.
Barbosa O, Ortiz C, Berenguer-Murcia A, Torres R, Rodrigues RC, Fernandez-Lafuente R., Biotechnol. Adv. 33(5), 2015
PMID: 25777494
Guidelines and cost analysis for catalyst production in biocatalytic processes
Tufvesson P, Lima-Ramos J, Nordblad M, Woodley JM., 2011
Isolation of cell-free bacterial inclusion bodies.
Rodriguez-Carmona E, Cano-Garrido O, Seras-Franzoso J, Villaverde A, Garcia-Fruitos E., Microb. Cell Fact. 9(), 2010
PMID: 20849629
High activity of inclusion bodies formed in Escherichia coli overproducing Clostridium thermocellum endoglucanase D.
Tokatlidis K, Dhurjati P, Millet J, Beguin P, Aubert JP., FEBS Lett. 282(1), 1991
PMID: 2026260
Generation of catalytic protein particles in Escherichia coli cells using the cellulose-binding domain from Cellulomonas fimi as a fusion partner
Choi SL., 2011

AUTHOR UNKNOWN, 0
Targeting lectin activity into inclusion bodies for the characterisation of glycoproteins.
Nahalka J, Mislovicova D, Kavcova H., Mol Biosyst 5(8), 2009
PMID: 19603115
Aggregation as bacterial inclusion bodies does not imply inactivation of enzymes and fluorescent proteins.
Garcia-Fruitos E, Gonzalez-Montalban N, Morell M, Vera A, Ferraz RM, Aris A, Ventura S, Villaverde A., Microb. Cell Fact. 4(), 2005
PMID: 16156893
Formation of active inclusion bodies induced by hydrophobic self-assembling peptide GFIL8.
Wang X, Zhou B, Hu W, Zhao Q, Lin Z., Microb. Cell Fact. 14(), 2015
PMID: 26077447
Small surfactant-like peptides can drive soluble proteins into active aggregates.
Zhou B, Xing L, Wu W, Zhang XE, Lin Z., Microb. Cell Fact. 11(), 2012
PMID: 22251949
Tetrabrachion: a filamentous archaebacterial surface protein assembly of unusual structure and extreme stability.
Peters J, Nitsch M, Kuhlmorgen B, Golbik R, Lupas A, Kellermann J, Engelhardt H, Pfander JP, Muller S, Goldie K., J. Mol. Biol. 245(4), 1995
PMID: 7837271
Fusion of a coiled-coil domain facilitates the high-level production of catalytically active enzyme inclusion bodies
Diener M, Kopka B, Pohl M, Jaeger K-E, Krauss U., 2016
Characterization of a second lysine decarboxylase isolated from Escherichia coli.
Kikuchi Y, Kojima H, Tanaka T, Takatsuka Y, Kamio Y., J. Bacteriol. 179(14), 1997
PMID: 9226257
Functional genomics of pH homeostasis in Corynebacterium glutamicum revealed novel links between pH response, oxidative stress, iron homeostasis and methionine synthesis.
Follmann M, Ochrombel I, Kramer R, Trotschel C, Poetsch A, Ruckert C, Huser A, Persicke M, Seiferling D, Kalinowski J, Marin K., BMC Genomics 10(), 2009
PMID: 20025733

AUTHOR UNKNOWN, 0
Spatiotemporal microbial single-cell analysis using a high-throughput microfluidics cultivation platform.
Grunberger A, Probst C, Helfrich S, Nanda A, Stute B, Wiechert W, von Lieres E, Noh K, Frunzke J, Kohlheyer D., Cytometry A 87(12), 2015
PMID: 26348020
E. coli transports aggregated proteins to the poles by a specific and energy-dependent process.
Rokney A, Shagan M, Kessel M, Smith Y, Rosenshine I, Oppenheim AB., J. Mol. Biol. 392(3), 2009
PMID: 19596340
Protein quality in bacterial inclusion bodies.
Ventura S, Villaverde A., Trends Biotechnol. 24(4), 2006
PMID: 16503059
The two forms of lysine decarboxylase; Kinetics and effect of expression in relation to acid tolerance response in E. coli
Krithika G, Arunachalam J, Priyanka H, Indulekha K., 2010
Metabolic profile of 1,5-diaminopentane producing Corynebacterium glutamicum under scale-down conditions: Blueprint for robustness to bioreactor inhomogeneities.
Limberg MH, Schulte J, Aryani T, Mahr R, Baumgart M, Bott M, Wiechert W, Oldiges M., Biotechnol. Bioeng. 114(3), 2016
PMID: 27641904

AUTHOR UNKNOWN, 0
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 29643457
PubMed | Europe PMC

Suchen in

Google Scholar