Functional characterization of a small Alarmone Hydrolase in Corynebacterium glutamicum

Ruwe M, Rückert C, Kalinowski J, Persicke M (2018)
Frontiers in Microbiology 9: 916.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
OA 2.22 MB
Abstract / Bemerkung
The (pp)pGpp metabolism is an important component of bacterial physiology as it is involved in various stress responses and mechanisms of cell homeostasis, e.g., the regulation of growth. However, in order to better understand the (pp)pGpp associated regulation, it is crucial to study the molecular mechanisms of (pp)pGpp metabolism. In recent years, bioinformatic analyses of the RelA/SpoT homolog (RSH) superfamily have led to the discovery of small monofunctional RSH derivatives in addition to the well-known bifunctional Rel proteins. These are also referred to as small alarmone synthetases (SASs) or small alarmone hydrolases (SAHs). In this study, the ORF cg1485 from C. glutamicum was identified as a putative SAH encoding gene, based on a high similarity of the corresponding amino acid sequence with the (pp)pGpp hydrolysis domain. The characterization of its gene product, designated as RelHCg, represents the first functional investigation of a bacterial representative of the SAH subfamily. The predicted pyrophosphohydrolase activity was demonstrated in vivo by expression in two E. coli strains, characterized by different alarmone basal levels, as well as by in vitro analysis of the purified protein. During the assay-based analysis of hydrolysis activity in relation to the three known alarmone species, both RelHCg and the bifunctional RSH enzyme RelCg were found to exhibit a pronounced substrate inhibition for alarmone concentrations of more than 0.75 mM. This characteristic of (pp)pGpp hydrolases could be an important mechanism for realizing the bistable character of the (pp)pGpp metabolism between a (pp)pGpp basal level and stress-associated alarmone production. The deletion of relHCg caused only a minor effect on growth behavior in both wild-type background and deletion mutants with deletion of (pp)pGpp synthetases. Based on this observation, the protein is probably only present or active under specific environmental conditions. The independent loss of the corresponding gene in numerous representatives of the genus Corynebacterium, which was found by bioinformatic analyses, also supports this hypothesis. Furthermore, growth analysis of all possible deletion combinations of the three active C. glutamicum RSH genes revealed interesting functional relationships which will have to be investigated in more detail in the future.
Frontiers in Microbiology
Page URI


Ruwe M, Rückert C, Kalinowski J, Persicke M. Functional characterization of a small Alarmone Hydrolase in Corynebacterium glutamicum. Frontiers in Microbiology. 2018;9: 916.
Ruwe, M., Rückert, C., Kalinowski, J., & Persicke, M. (2018). Functional characterization of a small Alarmone Hydrolase in Corynebacterium glutamicum. Frontiers in Microbiology, 9, 916. doi:10.3389/fmicb.2018.00916
Ruwe, Matthias, Rückert, Christian, Kalinowski, Jörn, and Persicke, Marcus. 2018. “Functional characterization of a small Alarmone Hydrolase in Corynebacterium glutamicum”. Frontiers in Microbiology 9: 916.
Ruwe, M., Rückert, C., Kalinowski, J., and Persicke, M. (2018). Functional characterization of a small Alarmone Hydrolase in Corynebacterium glutamicum. Frontiers in Microbiology 9:916.
Ruwe, M., et al., 2018. Functional characterization of a small Alarmone Hydrolase in Corynebacterium glutamicum. Frontiers in Microbiology, 9: 916.
M. Ruwe, et al., “Functional characterization of a small Alarmone Hydrolase in Corynebacterium glutamicum”, Frontiers in Microbiology, vol. 9, 2018, : 916.
Ruwe, M., Rückert, C., Kalinowski, J., Persicke, M.: Functional characterization of a small Alarmone Hydrolase in Corynebacterium glutamicum. Frontiers in Microbiology. 9, : 916 (2018).
Ruwe, Matthias, Rückert, Christian, Kalinowski, Jörn, and Persicke, Marcus. “Functional characterization of a small Alarmone Hydrolase in Corynebacterium glutamicum”. Frontiers in Microbiology 9 (2018): 916.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Access Level
OA Open Access
Zuletzt Hochgeladen
MD5 Prüfsumme

63 References

Daten bereitgestellt von Europe PubMed Central.

The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins.
Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Kramer R, Linke B, McHardy AC, Meyer F, Mockel B, Pfefferle W, Puhler A, Rey DA, Ruckert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A., J. Biotechnol. 104(1-3), 2003
PMID: 12948626
rRNA regulation during growth and under stringent conditions in Staphylococcus aureus.
Kastle B, Geiger T, Gratani FL, Reisinger R, Goerke C, Borisova M, Mayer C, Wolz C., Environ. Microbiol. 17(11), 2015
PMID: 25845735
The role of the Corynebacterium glutamicum rel gene in (p)ppGpp metabolism.
Wehmeier L, Schafer A, Burkovski A, Kramer R, Mechold U, Malke H, Puhler A, Kalinowski J., Microbiology (Reading, Engl.) 144 ( Pt 7)(), 1998
PMID: 9695918
(p)ppGpp: still magical?
Potrykus K, Cashel M., Annu. Rev. Microbiol. 62(), 2008
PMID: 18454629
Absence of ppGpp Leads to Increased Mobilization of Intermediately Accumulated Poly(3-Hydroxybutyrate) in Ralstonia eutropha H16.
Juengert JR, Borisova M, Mayer C, Wolz C, Brigham CJ, Sinskey AJ, Jendrossek D., Appl. Environ. Microbiol. 83(13), 2017
PMID: 28455332
HMMER web server: 2015 update.
Finn RD, Clements J, Arndt W, Miller BL, Wheeler TJ, Schreiber F, Bateman A, Eddy SR., Nucleic Acids Res. 43(W1), 2015
PMID: 25943547
Arabidopsis RelA/SpoT homologs implicate (p)ppGpp in plant signaling.
van der Biezen EA, Sun J, Coleman MJ, Bibb MJ, Jones JD., Proc. Natl. Acad. Sci. U.S.A. 97(7), 2000
PMID: 10725385
A metazoan ortholog of SpoT hydrolyzes ppGpp and functions in starvation responses.
Sun D, Lee G, Lee JH, Kim HY, Rhee HW, Park SY, Kim KJ, Kim Y, Kim BY, Hong JI, Park C, Choy HE, Kim JH, Jeon YH, Chung J., Nat. Struct. Mol. Biol. 17(10), 2010
PMID: 20818390
Residual guanosine 3',5'-bispyrophosphate synthetic activity of relA null mutants can be eliminated by spoT null mutations.
Xiao H, Kalman M, Ikehara K, Zemel S, Glaser G, Cashel M., J. Biol. Chem. 266(9), 1991
PMID: 2005134
The complete genome sequence of Escherichia coli K-12.
Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y., Science 277(5331), 1997
PMID: 9278503
The ACT domain family.
Chipman DM, Shaanan B., Curr. Opin. Struct. Biol. 11(6), 2001
PMID: 11751050
Comprehensive analysis of the Corynebacterium glutamicum transcriptome using an improved RNAseq technique.
Pfeifer-Sancar K, Mentz A, Ruckert C, Kalinowski J., BMC Genomics 14(), 2013
PMID: 24341750
Chassis organism from Corynebacterium glutamicum--a top-down approach to identify and delete irrelevant gene clusters.
Unthan S, Baumgart M, Radek A, Herbst M, Siebert D, Bruhl N, Bartsch A, Bott M, Wiechert W, Marin K, Hans S, Kramer R, Seibold G, Frunzke J, Kalinowski J, Ruckert C, Wendisch VF, Noack S., Biotechnol J 10(2), 2014
PMID: 25139579
Basal levels of (p)ppGpp in Enterococcus faecalis: the magic beyond the stringent response.
Gaca AO, Kajfasz JK, Miller JH, Liu K, Wang JD, Abranches J, Lemos JA., MBio 4(5), 2013
PMID: 24065631
Differential regulation by ppGpp versus pppGpp in Escherichia coli.
Mechold U, Potrykus K, Murphy H, Murakami KS, Cashel M., Nucleic Acids Res. 41(12), 2013
PMID: 23620295
Bistable responses in bacterial genetic networks: designs and dynamical consequences.
Tiwari A, Ray JC, Narula J, Igoshin OA., Math Biosci 231(1), 2011
PMID: 21385588
Isolation of RNA polymerase suppressors of a (p)ppGpp deficiency.
Murphy H, Cashel M., Meth. Enzymol. 371(), 2003
PMID: 14712731
Escherichia coli HGT: Engineered for high glucose throughput even under slowly growing or resting conditions.
Michalowski A, Siemann-Herzberg M, Takors R., Metab. Eng. 40(), 2017
PMID: 28110078
The magic dance of the alarmones (p)ppGpp.
Steinchen W, Bange G., Mol. Microbiol. 101(4), 2016
PMID: 27149325
Three gene products govern (p)ppGpp production by Streptococcus mutans.
Lemos JA, Lin VK, Nascimento MM, Abranches J, Burne RA., Mol. Microbiol. 65(6), 2007
PMID: 17714452
The HD domain defines a new superfamily of metal-dependent phosphohydrolases.
Aravind L, Koonin EV., Trends Biochem. Sci. 23(12), 1998
PMID: 9868367
ppGpp is the major source of growth rate control in E. coli.
Potrykus K, Murphy H, Philippe N, Cashel M., Environ. Microbiol. 13(3), 2010
PMID: 20946586
Corynebacterium glutamicum Chassis C1*: Building and Testing a Novel Platform Host for Synthetic Biology and Industrial Biotechnology.
Baumgart M, Unthan S, Kloß R, Radek A, Polen T, Tenhaef N, Muller MF, Kuberl A, Siebert D, Bruhl N, Marin K, Hans S, Kramer R, Bott M, Kalinowski J, Wiechert W, Seibold G, Frunzke J, Ruckert C, Wendisch VF, Noack S., ACS Synth Biol 7(1), 2017
PMID: 28803482
The global, ppGpp-mediated stringent response to amino acid starvation in Escherichia coli.
Traxler MF, Summers SM, Nguyen HT, Zacharia VM, Hightower GA, Smith JT, Conway T., Mol. Microbiol. 68(5), 2008
PMID: 18430135
Construction of a prophage-free variant of Corynebacterium glutamicum ATCC 13032 for use as a platform strain for basic research and industrial biotechnology.
Baumgart M, Unthan S, Ruckert C, Sivalingam J, Grunberger A, Kalinowski J, Bott M, Noack S, Frunzke J., Appl. Environ. Microbiol. 79(19), 2013
PMID: 23892752
ppGpp: magic beyond RNA polymerase.
Dalebroux ZD, Swanson MS., Nat. Rev. Microbiol. 10(3), 2012
PMID: 22337166
Phenotypic heterogeneity in mycobacterial stringent response.
Ghosh S, Sureka K, Ghosh B, Bose I, Basu J, Kundu M., BMC Syst Biol 5(), 2011
PMID: 21272295
From (p)ppGpp to (pp)pGpp: Characterization of Regulatory Effects of pGpp Synthesized by the Small Alarmone Synthetase of Enterococcus faecalis.
Gaca AO, Kudrin P, Colomer-Winter C, Beljantseva J, Liu K, Anderson B, Wang JD, Rejman D, Potrykus K, Cashel M, Hauryliuk V, Lemos JA., J. Bacteriol. 197(18), 2015
PMID: 26124242
Ribosomal Database Project: data and tools for high throughput rRNA analysis.
Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, Brown CT, Porras-Alfaro A, Kuske CR, Tiedje JM., Nucleic Acids Res. 42(Database issue), 2013
PMID: 24288368
The bacterial stringent response, conserved in chloroplasts, controls plant fertilization.
Masuda S, Mizusawa K, Narisawa T, Tozawa Y, Ohta H, Takamiya K., Plant Cell Physiol. 49(2), 2008
PMID: 18178586
MSI and MSII made on ribosome in idling step of protein synthesis.
Haseltine WA, Block R, Gilbert W, Weber K., Nature 238(5364), 1972
PMID: 4559580
Mutational analysis of the (p)ppGpp synthetase activity of the Rel enzyme of Mycobacterium tuberculosis.
Bag S, Das B, Dasgupta S, Bhadra RK., Arch. Microbiol. 196(8), 2014
PMID: 24859914
Insight of Genus Corynebacterium: Ascertaining the Role of Pathogenic and Non-pathogenic Species.
Oliveira A, Oliveira LC, Aburjaile F, Benevides L, Tiwari S, Jamal SB, Silva A, Figueiredo HCP, Ghosh P, Portela RW, De Carvalho Azevedo VA, Wattam AR., Front Microbiol 8(), 2017
PMID: 29075239
ppGpp conjures bacterial virulence.
Dalebroux ZD, Svensson SL, Gaynor EC, Swanson MS., Microbiol. Mol. Biol. Rev. 74(2), 2010
PMID: 20508246
Identification and functional analysis of novel (p)ppGpp synthetase genes in Bacillus subtilis.
Nanamiya H, Kasai K, Nozawa A, Yun CS, Narisawa T, Murakami K, Natori Y, Kawamura F, Tozawa Y., Mol. Microbiol. 67(2), 2007
PMID: 18067544
Enzymatic assembly of DNA molecules up to several hundred kilobases.
Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO., Nat. Methods 6(5), 2009
PMID: 19363495
Triggering the stringent response: signals responsible for activating (p)ppGpp synthesis in bacteria.
Irving SE, Corrigan RM., Microbiology (Reading, Engl.) 164(3), 2018
PMID: 29493495
Recent functional insights into the role of (p)ppGpp in bacterial physiology.
Hauryliuk V, Atkinson GC, Murakami KS, Tenson T, Gerdes K., Nat. Rev. Microbiol. 13(5), 2015
PMID: 25853779
Relaxed rrn expression and amino acid requirement of a Corynebacterium glutamicum rel mutant defective in (p)ppGpp metabolism.
Tauch A, Wehmeier L, Gotker S, Puhler A, Kalinowski J., FEMS Microbiol. Lett. 201(1), 2001
PMID: 11445167
A Corynebacterium glutamicum mutant with a defined deletion within the rplK gene is impaired in (p)ppGpp accumulation upon amino acid starvation.
Wehmeier L, Brockmann-Gretza O, Pisabarro A, Tauch A, Puhler A, Martin JF, Kalinowski J., Microbiology (Reading, Engl.) 147(Pt 3), 2001
PMID: 11238976
sigma54-promoter discrimination and regulation by ppGpp and DksA.
Bernardo LM, Johansson LU, Skarfstad E, Shingler V., J. Biol. Chem. 284(2), 2008
PMID: 19008221
Catalytic mechanism and allosteric regulation of an oligomeric (p)ppGpp synthetase by an alarmone.
Steinchen W, Schuhmacher JS, Altegoer F, Fage CD, Srinivasan V, Linne U, Marahiel MA, Bange G., Proc. Natl. Acad. Sci. U.S.A. 112(43), 2015
PMID: 26460002
Functional regulation of the opposing (p)ppGpp synthetase/hydrolase activities of RelMtb from Mycobacterium tuberculosis.
Avarbock A, Avarbock D, Teh JS, Buckstein M, Wang ZM, Rubin H., Biochemistry 44(29), 2005
PMID: 16026164
Material in PUB:
Teil dieser Dissertation

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 29867827
PubMed | Europe PMC

Suchen in

Google Scholar