Reactive oxygen species and redox regulation in mesophyll and bundle sheath cells of C4 plants

Turkan I, Uzilday B, Dietz K-J, Bräutigam A, Ozgur R (2018)
Journal of Experimental Botany 69(14): 3321-3331.

Download
OA 579.16 KB
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Volltext vorhanden für diesen Nachweis
Autor
; ; ; ;
Abstract / Bemerkung
Redox regulation, antioxidant defence, and reactive oxygen species (ROS) signalling are critical in performing and tuning metabolic activities. However, our concepts have mostly been developed for C3 plants since Arabidopsis thaliana has been the major model for research. Efforts to convert C3 plants to C4 to increase yield (such as IRRI’s C4 Rice Project) entail a better understanding of these processes in C4 plants. Various photosynthetic enzymes that take part in light reactions and carbon reactions are regulated via redox components, such as thioredoxins as redox transmitters and peroxiredoxins. Hence, understanding redox regulation in the mesophyll and bundle sheath chloroplasts of C4 plants is of paramount importance: it appears impossible to utilize efficient C4 photosynthesis without understanding its exact redox needs and the regulation mechanisms used during light reactions. In this review, we discuss current knowledge on redox regulation in C3 and C4 plants, with special emphasis on the mesophyll and bundle sheath differences that are found in C4. In these two cell types in C4 plants, linear and cyclic electron transport in the chloroplasts operate differentially when compared to C3 chloroplasts, changing the redox needs of the cell. Therefore, our focus is on photosynthetic light reactions, ROS production dynamics, antioxidant defence, and thiol-based redox regulation, with the aim of providing an overview of our current knowledge.
Erscheinungsjahr
Zeitschriftentitel
Journal of Experimental Botany
Band
69
Ausgabe
14
Seite(n)
3321-3331
ISSN
eISSN
PUB-ID

Zitieren

Turkan I, Uzilday B, Dietz K-J, Bräutigam A, Ozgur R. Reactive oxygen species and redox regulation in mesophyll and bundle sheath cells of C4 plants. Journal of Experimental Botany. 2018;69(14):3321-3331.
Turkan, I., Uzilday, B., Dietz, K. - J., Bräutigam, A., & Ozgur, R. (2018). Reactive oxygen species and redox regulation in mesophyll and bundle sheath cells of C4 plants. Journal of Experimental Botany, 69(14), 3321-3331. doi:10.1093/jxb/ery064
Turkan, I., Uzilday, B., Dietz, K. - J., Bräutigam, A., and Ozgur, R. (2018). Reactive oxygen species and redox regulation in mesophyll and bundle sheath cells of C4 plants. Journal of Experimental Botany 69, 3321-3331.
Turkan, I., et al., 2018. Reactive oxygen species and redox regulation in mesophyll and bundle sheath cells of C4 plants. Journal of Experimental Botany, 69(14), p 3321-3331.
I. Turkan, et al., “Reactive oxygen species and redox regulation in mesophyll and bundle sheath cells of C4 plants”, Journal of Experimental Botany, vol. 69, 2018, pp. 3321-3331.
Turkan, I., Uzilday, B., Dietz, K.-J., Bräutigam, A., Ozgur, R.: Reactive oxygen species and redox regulation in mesophyll and bundle sheath cells of C4 plants. Journal of Experimental Botany. 69, 3321-3331 (2018).
Turkan, Ismail, Uzilday, Baris, Dietz, Karl-Josef, Bräutigam, Andrea, and Ozgur, Rengin. “Reactive oxygen species and redox regulation in mesophyll and bundle sheath cells of C4 plants”. Journal of Experimental Botany 69.14 (2018): 3321-3331.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2018-11-09T10:08:03Z

1 Zitation in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

ROS and RNS: key signalling molecules in plants.
Turkan I., J Exp Bot 69(14), 2018
PMID: 29931350

86 References

Daten bereitgestellt von Europe PubMed Central.

Functional characterization of residues involved in redox modulation of maize photosynthetic NADP-malic enzyme activity.
Alvarez CE, Detarsio E, Moreno S, Andreo CS, Drincovich MF., Plant Cell Physiol. 53(6), 2012
PMID: 22514092
Univalent reduction of molecular oxygen by spinach chloroplasts on illumination.
Asada K, Kiso K, Yoshikawa K., J. Biol. Chem. 249(7), 1974
PMID: 4362064
An autoinhibitory domain confers redox regulation to maize glycerate kinase.
Bartsch O, Mikkat S, Hagemann M, Bauwe H., Plant Physiol. 153(2), 2010
PMID: 20413649
Photorespiration: players, partners and origin.
Bauwe H, Hagemann M, Fernie AR., Trends Plant Sci. 15(6), 2010
PMID: 20403720
Dating the rise of atmospheric oxygen.
Bekker A, Holland HD, Wang PL, Rumble D 3rd, Stein HJ, Hannah JL, Coetzee LL, Beukes NJ., Nature 427(6970), 2004
PMID: 14712267
Photorespiration connects C3 and C4 photosynthesis.
Brautigam A, Gowik U., J. Exp. Bot. 67(10), 2016
PMID: 26912798
An mRNA blueprint for C4 photosynthesis derived from comparative transcriptomics of closely related C3 and C4 species.
Brautigam A, Kajala K, Wullenweber J, Sommer M, Gagneul D, Weber KL, Carr KM, Gowik U, Mass J, Lercher MJ, Westhoff P, Hibberd JM, Weber AP., Plant Physiol. 155(1), 2010
PMID: 20543093
Photorespiration in C4 grasses remains slow under drought conditions.
Carmo-Silva AE, Powers SJ, Keys AJ, Arrabaca MC, Parry MA., Plant Cell Environ. 31(7), 2008
PMID: 18331589
C4 Photosynthesis in the Rice Paddy: Insights from the Noxious Weed Echinochloa glabrescens.
Covshoff S, Szecowka M, Hughes TE, Smith-Unna R, Kelly S, Bailey KJ, Sage TL, Pachebat JA, Leegood R, Hibberd JM., Plant Physiol. 170(1), 2015
PMID: 26527656
A complex containing PGRL1 and PGR5 is involved in the switch between linear and cyclic electron flow in Arabidopsis.
DalCorso G, Pesaresi P, Masiero S, Aseeva E, Schunemann D, Finazzi G, Joliot P, Barbato R, Leister D., Cell 132(2), 2008
PMID: 18243102
The function of peroxiredoxins in plant organelle redox metabolism.
Dietz KJ, Jacob S, Oelze ML, Laxa M, Tognetti V, de Miranda SM, Baier M, Finkemeier I., J. Exp. Bot. 57(8), 2006
PMID: 16606633
Redox- and Reactive Oxygen Species-Dependent Signaling into and out of the Photosynthesizing Chloroplast.
Dietz KJ, Turkan I, Krieger-Liszkay A., Plant Physiol. 171(3), 2016
PMID: 27255485
Differential Localization of Antioxidants in Maize Leaves.
Doulis AG, Debian N, Kingston-Smith AH, Foyer CH., Plant Physiol. 114(3), 1997
PMID: 12223757
The Mechanism of Variegation in immutans Provides Insight into Chloroplast Biogenesis.
Foudree A, Putarjunan A, Kambakam S, Nolan T, Fussell J, Pogorelko G, Rodermel S., Front Plant Sci 3(), 2012
PMID: 23205022
The end of the line: can ferredoxin and ferredoxin NADP(H) oxidoreductase determine the fate of photosynthetic electrons
Goss, Current Protein and Peptide Science 15(), 2014
Evolution of C4 photosynthesis in the genus Flaveria: how many and which genes does it take to make C4?
Gowik U, Brautigam A, Weber KL, Weber AP, Westhoff P., Plant Cell 23(6), 2011
PMID: 21705644
The path from C3 to C4 photosynthesis.
Gowik U, Westhoff P., Plant Physiol. 155(1), 2010
PMID: 20940348
C4 photosynthesis—a unique blend of modified biochemistry, anatomy and ultrastructure
Hatch, Biochimica et Biophysica Acta 895(), 1987
Irrungen, Wirrungen? The Mehler reaction in relation to cyclic electron transport in C3 plants
Heber, 2005
Predicting C4 photosynthesis evolution: modular, individually adaptive steps on a Mount Fuji fitness landscape.
Heckmann D, Schulze S, Denton A, Gowik U, Westhoff P, Weber AP, Lercher MJ., Cell 153(7), 2013
PMID: 23791184
Diverse roles for chloroplast stromal and thylakoid-bound ascorbate peroxidases in plant stress responses.
Kangasjarvi S, Lepisto A, Hannikainen K, Piippo M, Luomala EM, Aro EM, Rintamaki E., Biochem. J. 412(2), 2008
PMID: 18318659
The importance of energy balance in improving photosynthetic productivity.
Kramer DM, Evans JR., Plant Physiol. 155(1), 2010
PMID: 21078862
The dual role of the plastid terminal oxidase PTOX: between a protective and a pro-oxidant function
Krieger-Liszkay, Frontiers in Plant Science 6(), 2016
C4 syndrome—structural-analysis
Laetsch, Annual Review of Plant Physiology and Plant Molecular Biology 25(), 1974
Peroxiredoxin Q of Arabidopsis thaliana is attached to the thylakoids and functions in context of photosynthesis.
Lamkemeyer P, Laxa M, Collin V, Li W, Finkemeier I, Schottler MA, Holtkamp V, Tognetti VB, Issakidis-Bourguet E, Kandlbinder A, Weis E, Miginiac-Maslow M, Dietz KJ., Plant J. 45(6), 2006
PMID: 16507087
Thioredoxins in chloroplasts.
Lemaire SD, Michelet L, Zaffagnini M, Massot V, Issakidis-Bourguet E., Curr. Genet. 51(6), 2007
PMID: 17431629
Combining genetic and evolutionary engineering to establish C4 metabolism in C3 plants.
Li Y, Heckmann D, Lercher MJ, Maurino VG., J. Exp. Bot. 68(2), 2016
PMID: 27660481
Consequences of C4 differentiation for chloroplast membrane proteomes in maize mesophyll and bundle sheath cells.
Majeran W, Zybailov B, Ytterberg AJ, Dunsmore J, Sun Q, van Wijk KJ., Mol. Cell Proteomics 7(9), 2008
PMID: 18453340
The role of photorespiration during the evolution of C4 photosynthesis in the genus Flaveria.
Mallmann J, Heckmann D, Brautigam A, Lercher MJ, Weber AP, Westhoff P, Gowik U., Elife 3(), 2014
PMID: 24935935
Differential biogenesis of photosystem II in mesophyll and bundle-sheath cells of monocotyledonous NADP-malic enzyme-type C4 plants: the non-stoichiometric abundance of the subunits of photosystem II in the bundle-sheath chloroplasts and the translational activity of the plastome-encoded genes
Meierhoff, Planta 191(), 1993
Reactive oxygen gene network of plants.
Mittler R, Vanderauwera S, Gollery M, Van Breusegem F., Trends Plant Sci. 9(10), 2004
PMID: 15465684
Highly expressed genes are preferentially co-opted for C4 photosynthesis
Moreno-Villena, Molecular Biology and Evolution 35(), 2017
Oxidative stress: antagonistic signaling for acclimation or cell death?
Mullineaux PM, Baker NR., Plant Physiol. 154(2), 2010
PMID: 20921177
Elevated expression of PGR5 and NDH-H in bundle sheath chloroplasts in C4 flaveria species.
Munekage YN, Eymery F, Rumeau D, Cuine S, Oguri M, Nakamura N, Yokota A, Genty B, Peltier G., Plant Cell Physiol. 51(4), 2010
PMID: 20212018
Differential sensitivity of C3 and C4 plants to water deficit stress: association with oxidative stress and antioxidants
Nayyar, Environmental and Experimental Botany 58(), 2006
NTRC-dependent redox balance of 2-Cys peroxiredoxins is needed for optimal function of the photosynthetic apparatus
Pérez-Ruiz, Proceedings of the National Academy of Sciences, USA 114(), 2017
The Prx Q protein of Arabidopsis thaliana is a member of the luminal chloroplast proteome.
Petersson UA, Kieselbach T, Garcia-Cerdan JG, Schroder WP., FEBS Lett. 580(26), 2006
PMID: 17054949
Genomics and chloroplast evolution: what did cyanobacteria do for plants?
Raven JA, Allen JF., Genome Biol. 4(3), 2003
PMID: 12620099
Rubisco: assembly and mechanism
Roy, 2000
The evolution of C4 photosynthesis.
Sage RF., New Phytol. 161(2), 2004
PMID: IND43668189
Photorespiration and the evolution of C4 photosynthesis.
Sage RF, Sage TL, Kocacinar F., Annu Rev Plant Biol 63(), 2012
PMID: 22404472
Photosynthesis in C3-C4 intermediate Moricandia species.
Schluter U, Brautigam A, Gowik U, Melzer M, Christin PA, Kurz S, Mettler-Altmann T, Weber AP., J. Exp. Bot. 68(2), 2016
PMID: 28110276
Engineering C4 photosynthesis into C3 chassis in the synthetic biology age.
Schuler ML, Mantegazza O, Weber AP., Plant J. 87(1), 2016
PMID: 26945781
Evolution of C4 photosynthesis in the genus flaveria: establishment of a photorespiratory CO2 pump.
Schulze S, Mallmann J, Burscheidt J, Koczor M, Streubel M, Bauwe H, Gowik U, Westhoff P., Plant Cell 25(7), 2013
PMID: 23847152
Antioxidant defense in the leaves of C3 and C4 plants under salinity stress
Stepien, Physiologia Plantarum 125(), 2005
PGR5-PGRL1-Dependent Cyclic Electron Transport Modulates Linear Electron Transport Rate in Arabidopsis thaliana.
Suorsa M, Rossi F, Tadini L, Labs M, Colombo M, Jahns P, Kater MM, Leister D, Finazzi G, Aro EM, Barbato R, Pesaresi P., Mol Plant 9(2), 2015
PMID: 26687812
Microbial ribulose 1,5-bisphosphate carboxylase/oxygenase: a different perspective
Tabita, Photosynthesis Research 60(), 1999
Three novel subunits of Arabidopsis chloroplastic NAD(P)H dehydrogenase identified by bioinformatic and reverse genetic approaches.
Takabayashi A, Ishikawa N, Obayashi T, Ishida S, Obokata J, Endo T, Sato F., Plant J. 57(2), 2008
PMID: 18785996
Differential use of two cyclic electron flows around photosystem I for driving CO2-concentration mechanism in C4 photosynthesis
Takabayashi, Proceedings of the National Academy of Sciences, USA 102(), 2005
The early origins of terrestrial C4 photosynthesis
Tipple, Annual Review of Earth and Planetary Sciences 35(), 2007
Changes in redox regulation during transition from C3 to single cell C4 photosynthesis in Bienertia sinuspersici.
Uzilday B, Ozgur R, Yalcinkaya T, Turkan I, Sekmen AH., J. Plant Physiol. 220(), 2017
PMID: 29128610
The C(4) pathway: an efficient CO(2) pump.
von Caemmerer S, Furbank RT., Photosyn. Res. 77(2-3), 2003
PMID: 16228376
The development of C₄rice: current progress and future challenges.
von Caemmerer S, Quick WP, Furbank RT., Science 336(6089), 2012
PMID: 22745421

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 29529246
PubMed | Europe PMC

Suchen in

Google Scholar