Patchoulol production with metabolically engineered Corynebacterium glutamicum
Henke NA, Wichmann J, Baier T, Frohwitter J, Lauersen KJ, Risse JM, Peters-Wendisch P, Kruse O, Wendisch VF (2018)
Genes 9(4): 219.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
genes-09-00219.wendisch.pdf
792.16 KB
Autor*in
Einrichtung
Abstract / Bemerkung
Patchoulol is a sesquiterpene alcohol and an important natural product for the perfume industry. Corynebacterium glutamicum is the prominent host for the fermentative production of amino acids with an average annual production volume of ~6 million tons. Due to its robustness and well established large-scale fermentation, C. glutamicum has been engineered for the production of a number of value-added compounds including terpenoids. Both C40 and C50 carotenoids, including the industrially relevant astaxanthin, and short-chain terpenes such as the sesquiterpene valencene can be produced with this organism. In this study, systematic metabolic engineering enabled construction of a patchoulol producing C. glutamicum strain by applying the following strategies: (i) construction of a farnesyl pyrophosphate-producing platform strain by combining genomic deletions with heterologous expression of ispA from Escherichia coli; (ii) prevention of carotenoid-like byproduct formation; (iii) overproduction of limiting enzymes from the 2-c-methyl-d-erythritol 4-phosphate (MEP)-pathway to increase precursor supply; and (iv) heterologous expression of the plant patchoulol synthase gene PcPS from Pogostemon cablin. Additionally, a proof of principle liter-scale fermentation with a two-phase organic overlay-culture medium system for terpenoid capture was performed. To the best of our knowledge, the patchoulol titers demonstrated here are the highest reported to date with up to 60 mg L−1 and volumetric productivities of up to 18 mg L−1 d−1.
Stichworte
patchoulol;
Corynebacterium glutamicum;
sesquiterpene;
metabolic engineering;
algae;
Escherichia coli
Erscheinungsjahr
2018
Zeitschriftentitel
Genes
Band
9
Ausgabe
4
Art.-Nr.
219
Urheberrecht / Lizenzen
ISSN
2073-4425
eISSN
2073-4425
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Deutsche Forschungsgemeinschaft und die Universität Bielefeld gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2919149
Zitieren
Henke NA, Wichmann J, Baier T, et al. Patchoulol production with metabolically engineered Corynebacterium glutamicum. Genes. 2018;9(4): 219.
Henke, N. A., Wichmann, J., Baier, T., Frohwitter, J., Lauersen, K. J., Risse, J. M., Peters-Wendisch, P., et al. (2018). Patchoulol production with metabolically engineered Corynebacterium glutamicum. Genes, 9(4), 219. doi:10.3390/genes9040219
Henke, Nadja Alina, Wichmann, Julian, Baier, Thomas, Frohwitter, Jonas, Lauersen, Kyle J., Risse, Joe Max, Peters-Wendisch, Petra, Kruse, Olaf, and Wendisch, Volker F. 2018. “Patchoulol production with metabolically engineered Corynebacterium glutamicum”. Genes 9 (4): 219.
Henke, N. A., Wichmann, J., Baier, T., Frohwitter, J., Lauersen, K. J., Risse, J. M., Peters-Wendisch, P., Kruse, O., and Wendisch, V. F. (2018). Patchoulol production with metabolically engineered Corynebacterium glutamicum. Genes 9:219.
Henke, N.A., et al., 2018. Patchoulol production with metabolically engineered Corynebacterium glutamicum. Genes, 9(4): 219.
N.A. Henke, et al., “Patchoulol production with metabolically engineered Corynebacterium glutamicum”, Genes, vol. 9, 2018, : 219.
Henke, N.A., Wichmann, J., Baier, T., Frohwitter, J., Lauersen, K.J., Risse, J.M., Peters-Wendisch, P., Kruse, O., Wendisch, V.F.: Patchoulol production with metabolically engineered Corynebacterium glutamicum. Genes. 9, : 219 (2018).
Henke, Nadja Alina, Wichmann, Julian, Baier, Thomas, Frohwitter, Jonas, Lauersen, Kyle J., Risse, Joe Max, Peters-Wendisch, Petra, Kruse, Olaf, and Wendisch, Volker F. “Patchoulol production with metabolically engineered Corynebacterium glutamicum”. Genes 9.4 (2018): 219.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Name
genes-09-00219.wendisch.pdf
792.16 KB
Access Level
Open Access
Zuletzt Hochgeladen
2019-09-25T06:52:48Z
MD5 Prüfsumme
429f27ff9168d1125fc37cd4da7eb69c
Daten bereitgestellt von European Bioinformatics Institute (EBI)
1 Zitation in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
Recent advances in metabolic engineering of Corynebacterium glutamicum for bioproduction of value-added aromatic chemicals and natural products.
Kogure T, Inui M., Appl Microbiol Biotechnol 102(20), 2018
PMID: 30109397
Kogure T, Inui M., Appl Microbiol Biotechnol 102(20), 2018
PMID: 30109397
51 References
Daten bereitgestellt von Europe PubMed Central.
The Methylerythritol Phosphate Pathway to Isoprenoids.
Frank A, Groll M., Chem. Rev. 117(8), 2016
PMID: 27995802
Frank A, Groll M., Chem. Rev. 117(8), 2016
PMID: 27995802
Metabolic plasticity for isoprenoid biosynthesis in bacteria.
Perez-Gil J, Rodriguez-Concepcion M., Biochem. J. 452(1), 2013
PMID: 23614721
Perez-Gil J, Rodriguez-Concepcion M., Biochem. J. 452(1), 2013
PMID: 23614721
Herbage, oil yield and oil quality of patchouli [Pogostemon cablin (Blanco) Benth.] influenced by irrigation, organic mulch and nitrogen application in semi-arid tropical climate.
Singh M, Sharma S, Ramesh S., Industrial crops and products. 16(2), 2002
PMID: IND23333721
Singh M, Sharma S, Ramesh S., Industrial crops and products. 16(2), 2002
PMID: IND23333721
The diverse sesquiterpene profile of patchouli, Pogostemon cablin, is correlated with a limited number of sesquiterpene synthases.
Deguerry F, Pastore L, Wu S, Clark A, Chappell J, Schalk M., Arch. Biochem. Biophys. 454(2), 2006
PMID: 16970904
Deguerry F, Pastore L, Wu S, Clark A, Chappell J, Schalk M., Arch. Biochem. Biophys. 454(2), 2006
PMID: 16970904
The extraction of essential oils from patchouli leaves (Pogostemon cablin benth) using a microwave air-hydrodistillation method as a new green technique
Kusuma H.S., Mahfud M.., 2017
Kusuma H.S., Mahfud M.., 2017
Purification and characterization of the sesquiterpene cyclase patchoulol synthase from Pogostemon cablin.
Munck SL, Croteau R., Arch. Biochem. Biophys. 282(1), 1990
PMID: 2171435
Munck SL, Croteau R., Arch. Biochem. Biophys. 282(1), 1990
PMID: 2171435
In silico profiling of Escherichia coli and Saccharomyces cerevisiae as terpenoid factories.
Gruchattka E, Hadicke O, Klamt S, Schutz V, Kayser O., Microb. Cell Fact. 12(), 2013
PMID: 24059635
Gruchattka E, Hadicke O, Klamt S, Schutz V, Kayser O., Microb. Cell Fact. 12(), 2013
PMID: 24059635
Metabolic engineering of the moss Physcomitrella patens to produce the sesquiterpenoids patchoulol and α/β-santalene.
Zhan X, Zhang YH, Chen DF, Simonsen HT., Front Plant Sci 5(), 2014
PMID: 25477891
Zhan X, Zhang YH, Chen DF, Simonsen HT., Front Plant Sci 5(), 2014
PMID: 25477891
Efficient phototrophic production of a high-value sesquiterpenoid from the eukaryotic microalga Chlamydomonas reinhardtii.
Lauersen KJ, Baier T, Wichmann J, Wordenweber R, Mussgnug JH, Hubner W, Huser T, Kruse O., Metab. Eng. 38(), 2016
PMID: 27474353
Lauersen KJ, Baier T, Wichmann J, Wordenweber R, Mussgnug JH, Hubner W, Huser T, Kruse O., Metab. Eng. 38(), 2016
PMID: 27474353
High-cell-density cultivation of microorganisms.
Riesenberg D, Guthke R., Appl. Microbiol. Biotechnol. 51(4), 1999
PMID: 10341426
Riesenberg D, Guthke R., Appl. Microbiol. Biotechnol. 51(4), 1999
PMID: 10341426
Adaptive laboratory evolution of Corynebacterium glutamicum towards higher growth rates on glucose minimal medium.
Pfeifer E, Gatgens C, Polen T, Frunzke J., Sci Rep 7(1), 2017
PMID: 29196644
Pfeifer E, Gatgens C, Polen T, Frunzke J., Sci Rep 7(1), 2017
PMID: 29196644
Engineering microbial cell factories: Metabolic engineering of Corynebacterium glutamicum with a focus on non-natural products.
Heider SA, Wendisch VF., Biotechnol J 10(8), 2015
PMID: 26216246
Heider SA, Wendisch VF., Biotechnol J 10(8), 2015
PMID: 26216246
Production of amino acids - Genetic and metabolic engineering approaches.
Lee JH, Wendisch VF., Bioresour. Technol. 245(Pt B), 2017
PMID: 28552565
Lee JH, Wendisch VF., Bioresour. Technol. 245(Pt B), 2017
PMID: 28552565
Carotenoid biosynthesis and overproduction in Corynebacterium glutamicum.
Heider SA, Peters-Wendisch P, Wendisch VF., BMC Microbiol. 12(), 2012
PMID: 22963379
Heider SA, Peters-Wendisch P, Wendisch VF., BMC Microbiol. 12(), 2012
PMID: 22963379
Detailed biosynthetic pathway to decaprenoxanthin diglucoside in Corynebacterium glutamicum and identification of novel intermediates.
Krubasik P, Takaichi S, Maoka T, Kobayashi M, Masamoto K, Sandmann G., Arch. Microbiol. 176(3), 2001
PMID: 11511870
Krubasik P, Takaichi S, Maoka T, Kobayashi M, Masamoto K, Sandmann G., Arch. Microbiol. 176(3), 2001
PMID: 11511870
Production of the sesquiterpene (+)-valencene by metabolically engineered Corynebacterium glutamicum.
Frohwitter J, Heider SA, Peters-Wendisch P, Beekwilder J, Wendisch VF., J. Biotechnol. 191(), 2014
PMID: 24910970
Frohwitter J, Heider SA, Peters-Wendisch P, Beekwilder J, Wendisch VF., J. Biotechnol. 191(), 2014
PMID: 24910970
Light-Controlled Cell Factories: Employing Photocaged Isopropyl-β-d-Thiogalactopyranoside for Light-Mediated Optimization of lac Promoter-Based Gene Expression and (+)-Valencene Biosynthesis in Corynebacterium glutamicum.
Binder D, Frohwitter J, Mahr R, Bier C, Grunberger A, Loeschcke A, Peters-Wendisch P, Kohlheyer D, Pietruszka J, Frunzke J, Jaeger KE, Wendisch VF, Drepper T., Appl. Environ. Microbiol. 82(20), 2016
PMID: 27520809
Binder D, Frohwitter J, Mahr R, Bier C, Grunberger A, Loeschcke A, Peters-Wendisch P, Kohlheyer D, Pietruszka J, Frunzke J, Jaeger KE, Wendisch VF, Drepper T., Appl. Environ. Microbiol. 82(20), 2016
PMID: 27520809
Optimization of the IPP Precursor Supply for the Production of Lycopene, Decaprenoxanthin and Astaxanthin by Corynebacterium glutamicum.
Heider SA, Wolf N, Hofemeier A, Peters-Wendisch P, Wendisch VF., Front Bioeng Biotechnol 2(), 2014
PMID: 25191655
Heider SA, Wolf N, Hofemeier A, Peters-Wendisch P, Wendisch VF., Front Bioeng Biotechnol 2(), 2014
PMID: 25191655
Production and glucosylation of C50 and C 40 carotenoids by metabolically engineered Corynebacterium glutamicum.
Heider SA, Peters-Wendisch P, Netzer R, Stafnes M, Brautaset T, Wendisch VF., Appl. Microbiol. Biotechnol. 98(3), 2013
PMID: 24270893
Heider SA, Peters-Wendisch P, Netzer R, Stafnes M, Brautaset T, Wendisch VF., Appl. Microbiol. Biotechnol. 98(3), 2013
PMID: 24270893
Isoprenoid Pyrophosphate-Dependent Transcriptional Regulation of Carotenogenesis in Corynebacterium glutamicum.
Henke NA, Heider SAE, Hannibal S, Wendisch VF, Peters-Wendisch P., Front Microbiol 8(), 2017
PMID: 28484430
Henke NA, Heider SAE, Hannibal S, Wendisch VF, Peters-Wendisch P., Front Microbiol 8(), 2017
PMID: 28484430
Overexpression of the primary sigma factor gene sigA improved carotenoid production by Corynebacterium glutamicum: Application to production of β-carotene and the non-native linear C50 carotenoid bisanhydrobacterioruberin.
Taniguchi H, Henke NA, Heider SAE, Wendisch VF., Metab Eng Commun 4(), 2017
PMID: 29142827
Taniguchi H, Henke NA, Heider SAE, Wendisch VF., Metab Eng Commun 4(), 2017
PMID: 29142827
Coproduction of cell-bound and secreted value-added compounds: Simultaneous production of carotenoids and amino acids by Corynebacterium glutamicum
Henke N.A., Wiebe D., Pérez-García F., Peters-Wendisch P., Wendisch V.F.., 2018
Henke N.A., Wiebe D., Pérez-García F., Peters-Wendisch P., Wendisch V.F.., 2018
Taxonomical studies on glutamic acid producing bacteria
Abe S., Takayarna K., Kinoshita S.., 1967
Abe S., Takayarna K., Kinoshita S.., 1967
Eggeling L., Bott M.., 2005
Studies on transformation of Escherichia coli with plasmids.
Hanahan D., J. Mol. Biol. 166(4), 1983
PMID: 6345791
Hanahan D., J. Mol. Biol. 166(4), 1983
PMID: 6345791
Tools for genetic engineering in the amino acid-producing bacterium Corynebacterium glutamicum.
Kirchner O, Tauch A., J. Biotechnol. 104(1-3), 2003
PMID: 12948646
Kirchner O, Tauch A., J. Biotechnol. 104(1-3), 2003
PMID: 12948646
Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production.
Stansen C, Uy D, Delaunay S, Eggeling L, Goergen JL, Wendisch VF., Appl. Environ. Microbiol. 71(10), 2005
PMID: 16204505
Stansen C, Uy D, Delaunay S, Eggeling L, Goergen JL, Wendisch VF., Appl. Environ. Microbiol. 71(10), 2005
PMID: 16204505
Accelerated pentose utilization by Corynebacterium glutamicum for accelerated production of lysine, glutamate, ornithine and putrescine.
Meiswinkel TM, Gopinath V, Lindner SN, Nampoothiri KM, Wendisch VF., Microb Biotechnol 6(2), 2012
PMID: 23164409
Meiswinkel TM, Gopinath V, Lindner SN, Nampoothiri KM, Wendisch VF., Microb Biotechnol 6(2), 2012
PMID: 23164409
Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum.
Peters-Wendisch PG, Schiel B, Wendisch VF, Katsoulidis E, Mockel B, Sahm H, Eikmanns BJ., J. Mol. Microbiol. Biotechnol. 3(2), 2001
PMID: 11321586
Peters-Wendisch PG, Schiel B, Wendisch VF, Katsoulidis E, Mockel B, Sahm H, Eikmanns BJ., J. Mol. Microbiol. Biotechnol. 3(2), 2001
PMID: 11321586
Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum.
Schafer A, Tauch A, Jager W, Kalinowski J, Thierbach G, Puhler A., Gene 145(1), 1994
PMID: 8045426
Schafer A, Tauch A, Jager W, Kalinowski J, Thierbach G, Puhler A., Gene 145(1), 1994
PMID: 8045426
Enzymatic assembly of DNA molecules up to several hundred kilobases.
Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO., Nat. Methods 6(5), 2009
PMID: 19363495
Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO., Nat. Methods 6(5), 2009
PMID: 19363495
Sambrook J., Russell D.., 2001
A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA.
van der Rest ME, Lange C, Molenaar D., Appl. Microbiol. Biotechnol. 52(4), 1999
PMID: 10570802
van der Rest ME, Lange C, Molenaar D., Appl. Microbiol. Biotechnol. 52(4), 1999
PMID: 10570802
IdsA is the major geranylgeranyl pyrophosphate synthase involved in carotenogenesis in Corynebacterium glutamicum.
Heider SA, Peters-Wendisch P, Beekwilder J, Wendisch VF., FEBS J. 281(21), 2014
PMID: 25181035
Heider SA, Peters-Wendisch P, Beekwilder J, Wendisch VF., FEBS J. 281(21), 2014
PMID: 25181035
Production of the Marine Carotenoid Astaxanthin by Metabolically Engineered Corynebacterium glutamicum.
Henke NA, Heider SA, Peters-Wendisch P, Wendisch VF., Mar Drugs 14(7), 2016
PMID: 27376307
Henke NA, Heider SA, Peters-Wendisch P, Wendisch VF., Mar Drugs 14(7), 2016
PMID: 27376307
Significantly enhanced production of isoprene by ordered coexpression of genes dxs, dxr, and idi in Escherichia coli.
Lv X, Xu H, Yu H., Appl. Microbiol. Biotechnol. 97(6), 2012
PMID: 23143466
Lv X, Xu H, Yu H., Appl. Microbiol. Biotechnol. 97(6), 2012
PMID: 23143466
Combinatorial pathway optimization in Escherichia coli by directed co-evolution of rate-limiting enzymes and modular pathway engineering.
Lv X, Gu J, Wang F, Xie W, Liu M, Ye L, Yu H., Biotechnol. Bioeng. 113(12), 2016
PMID: 27316379
Lv X, Gu J, Wang F, Xie W, Liu M, Ye L, Yu H., Biotechnol. Bioeng. 113(12), 2016
PMID: 27316379
Amino acid production from rice straw and wheat bran hydrolysates by recombinant pentose-utilizing Corynebacterium glutamicum.
Gopinath V, Meiswinkel TM, Wendisch VF, Nampoothiri KM., Appl. Microbiol. Biotechnol. 92(5), 2011
PMID: 21796382
Gopinath V, Meiswinkel TM, Wendisch VF, Nampoothiri KM., Appl. Microbiol. Biotechnol. 92(5), 2011
PMID: 21796382
Microbial Cell Factories for the Production of Terpenoid Flavor and Fragrance Compounds.
Schempp FM, Drummond L, Buchhaupt M, Schrader J., J. Agric. Food Chem. 66(10), 2017
PMID: 28418659
Schempp FM, Drummond L, Buchhaupt M, Schrader J., J. Agric. Food Chem. 66(10), 2017
PMID: 28418659
Metabolic engineering of the nonmevalonate isopentenyl diphosphate synthesis pathway in Escherichia coli enhances lycopene production.
Kim SW, Keasling JD., Biotechnol. Bioeng. 72(4), 2001
PMID: 11180061
Kim SW, Keasling JD., Biotechnol. Bioeng. 72(4), 2001
PMID: 11180061
Mechanistic studies of IspH in the deoxyxylulose phosphate pathway: heterolytic C-O bond cleavage at C4 position.
Xiao Y, Zhao ZK, Liu P., J. Am. Chem. Soc. 130(7), 2008
PMID: 18217765
Xiao Y, Zhao ZK, Liu P., J. Am. Chem. Soc. 130(7), 2008
PMID: 18217765
In Vivo Validation of In Silico Predicted Metabolic Engineering Strategies in Yeast: Disruption of α-Ketoglutarate Dehydrogenase and Expression of ATP-Citrate Lyase for Terpenoid Production.
Gruchattka E, Kayser O., PLoS ONE 10(12), 2015
PMID: 26701782
Gruchattka E, Kayser O., PLoS ONE 10(12), 2015
PMID: 26701782
Tools and techniques for solvent selection: Green solvent selection guides
Byrne F.P., Jin S., Paggiola G., Petchey T.H.M., Clark J.H., Farmer T.J., Hunt A.J., Robert C., Sherwood J.., 2016
Byrne F.P., Jin S., Paggiola G., Petchey T.H.M., Clark J.H., Farmer T.J., Hunt A.J., Robert C., Sherwood J.., 2016
Alternative solvents for natural products extraction
Muniglia L., Claisse N., Baudelet P.-H., Ricochon G.., 2014
Muniglia L., Claisse N., Baudelet P.-H., Ricochon G.., 2014
Evidence of isoprenoid precursor toxicity in Bacillus subtilis.
Sivy TL, Fall R, Rosenstiel TN., Biosci. Biotechnol. Biochem. 75(12), 2011
PMID: 22146731
Sivy TL, Fall R, Rosenstiel TN., Biosci. Biotechnol. Biochem. 75(12), 2011
PMID: 22146731
Characterisation of a Recombinant Patchoulol Synthase Variant for Biocatalytic Production of Terpenes.
Frister T, Hartwig S, Alemdar S, Schnatz K, Thons L, Scheper T, Beutel S., Appl. Biochem. Biotechnol. 176(8), 2015
PMID: 26100386
Frister T, Hartwig S, Alemdar S, Schnatz K, Thons L, Scheper T, Beutel S., Appl. Biochem. Biotechnol. 176(8), 2015
PMID: 26100386
Isoprenoid drugs, biofuels, and chemicals--artemisinin, farnesene, and beyond.
George KW, Alonso-Gutierrez J, Keasling JD, Lee TS., Adv. Biochem. Eng. Biotechnol. 148(), 2015
PMID: 25577395
George KW, Alonso-Gutierrez J, Keasling JD, Lee TS., Adv. Biochem. Eng. Biotechnol. 148(), 2015
PMID: 25577395
Amyris
Pray T.., 2010
Pray T.., 2010
High-level production of amorpha-4,11-diene, a precursor of the antimalarial agent artemisinin, in Escherichia coli.
Tsuruta H, Paddon CJ, Eng D, Lenihan JR, Horning T, Anthony LC, Regentin R, Keasling JD, Renninger NS, Newman JD., PLoS ONE 4(2), 2009
PMID: 19221601
Tsuruta H, Paddon CJ, Eng D, Lenihan JR, Horning T, Anthony LC, Regentin R, Keasling JD, Renninger NS, Newman JD., PLoS ONE 4(2), 2009
PMID: 19221601
Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development.
Paddon CJ, Keasling JD., Nat. Rev. Microbiol. 12(5), 2014
PMID: 24686413
Paddon CJ, Keasling JD., Nat. Rev. Microbiol. 12(5), 2014
PMID: 24686413
Material in PUB:
Teil dieser Dissertation
Regulation of carotenoid biosynthesis and metabolic engineering for terpenoid production in Corynebacterium glutamicum
Henke NA (2018)
Bielefeld: Universität Bielefeld.
Henke NA (2018)
Bielefeld: Universität Bielefeld.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 29673223
PubMed | Europe PMC
Suchen in