Patchoulol production with metabolically engineered Corynebacterium glutamicum

Henke NA, Wichmann J, Baier T, Frohwitter J, Lauersen KJ, Risse JM, Peters-Wendisch P, Kruse O, Wendisch VF (2018)
Genes 9(4): 219.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
OA 792.16 KB
Abstract / Bemerkung
Patchoulol is a sesquiterpene alcohol and an important natural product for the perfume industry. Corynebacterium glutamicum is the prominent host for the fermentative production of amino acids with an average annual production volume of ~6 million tons. Due to its robustness and well established large-scale fermentation, C. glutamicum has been engineered for the production of a number of value-added compounds including terpenoids. Both C40 and C50 carotenoids, including the industrially relevant astaxanthin, and short-chain terpenes such as the sesquiterpene valencene can be produced with this organism. In this study, systematic metabolic engineering enabled construction of a patchoulol producing C. glutamicum strain by applying the following strategies: (i) construction of a farnesyl pyrophosphate-producing platform strain by combining genomic deletions with heterologous expression of ispA from Escherichia coli; (ii) prevention of carotenoid-like byproduct formation; (iii) overproduction of limiting enzymes from the 2-c-methyl-d-erythritol 4-phosphate (MEP)-pathway to increase precursor supply; and (iv) heterologous expression of the plant patchoulol synthase gene PcPS from Pogostemon cablin. Additionally, a proof of principle liter-scale fermentation with a two-phase organic overlay-culture medium system for terpenoid capture was performed. To the best of our knowledge, the patchoulol titers demonstrated here are the highest reported to date with up to 60 mg L−1 and volumetric productivities of up to 18 mg L−1 d−1.
patchoulol; Corynebacterium glutamicum; sesquiterpene; metabolic engineering; algae; Escherichia coli
Open-Access-Publikationskosten wurden durch die Deutsche Forschungsgemeinschaft und die Universität Bielefeld gefördert.
Page URI


Henke NA, Wichmann J, Baier T, et al. Patchoulol production with metabolically engineered Corynebacterium glutamicum. Genes. 2018;9(4): 219.
Henke, N. A., Wichmann, J., Baier, T., Frohwitter, J., Lauersen, K. J., Risse, J. M., Peters-Wendisch, P., et al. (2018). Patchoulol production with metabolically engineered Corynebacterium glutamicum. Genes, 9(4), 219. doi:10.3390/genes9040219
Henke, N. A., Wichmann, J., Baier, T., Frohwitter, J., Lauersen, K. J., Risse, J. M., Peters-Wendisch, P., Kruse, O., and Wendisch, V. F. (2018). Patchoulol production with metabolically engineered Corynebacterium glutamicum. Genes 9:219.
Henke, N.A., et al., 2018. Patchoulol production with metabolically engineered Corynebacterium glutamicum. Genes, 9(4): 219.
N.A. Henke, et al., “Patchoulol production with metabolically engineered Corynebacterium glutamicum”, Genes, vol. 9, 2018, : 219.
Henke, N.A., Wichmann, J., Baier, T., Frohwitter, J., Lauersen, K.J., Risse, J.M., Peters-Wendisch, P., Kruse, O., Wendisch, V.F.: Patchoulol production with metabolically engineered Corynebacterium glutamicum. Genes. 9, : 219 (2018).
Henke, Nadja Alina, Wichmann, Julian, Baier, Thomas, Frohwitter, Jonas, Lauersen, Kyle J., Risse, Joe Max, Peters-Wendisch, Petra, Kruse, Olaf, and Wendisch, Volker F. “Patchoulol production with metabolically engineered Corynebacterium glutamicum”. Genes 9.4 (2018): 219.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Access Level
OA Open Access
Zuletzt Hochgeladen
MD5 Prüfsumme

1 Zitation in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

51 References

Daten bereitgestellt von Europe PubMed Central.

The Methylerythritol Phosphate Pathway to Isoprenoids.
Frank A, Groll M., Chem. Rev. 117(8), 2016
PMID: 27995802
Metabolic plasticity for isoprenoid biosynthesis in bacteria.
Perez-Gil J, Rodriguez-Concepcion M., Biochem. J. 452(1), 2013
PMID: 23614721
Terpenoid biomaterials.
Bohlmann J, Keeling CI., Plant J. 54(4), 2008
PMID: 18476870
The diverse sesquiterpene profile of patchouli, Pogostemon cablin, is correlated with a limited number of sesquiterpene synthases.
Deguerry F, Pastore L, Wu S, Clark A, Chappell J, Schalk M., Arch. Biochem. Biophys. 454(2), 2006
PMID: 16970904
The extraction of essential oils from patchouli leaves (Pogostemon cablin benth) using a microwave air-hydrodistillation method as a new green technique
Kusuma H.S., Mahfud M.., 2017
In silico profiling of Escherichia coli and Saccharomyces cerevisiae as terpenoid factories.
Gruchattka E, Hadicke O, Klamt S, Schutz V, Kayser O., Microb. Cell Fact. 12(), 2013
PMID: 24059635
Efficient phototrophic production of a high-value sesquiterpenoid from the eukaryotic microalga Chlamydomonas reinhardtii.
Lauersen KJ, Baier T, Wichmann J, Wordenweber R, Mussgnug JH, Hubner W, Huser T, Kruse O., Metab. Eng. 38(), 2016
PMID: 27474353
High-cell-density cultivation of microorganisms.
Riesenberg D, Guthke R., Appl. Microbiol. Biotechnol. 51(4), 1999
PMID: 10341426
Production of amino acids - Genetic and metabolic engineering approaches.
Lee JH, Wendisch VF., Bioresour. Technol. 245(Pt B), 2017
PMID: 28552565
Carotenoid biosynthesis and overproduction in Corynebacterium glutamicum.
Heider SA, Peters-Wendisch P, Wendisch VF., BMC Microbiol. 12(), 2012
PMID: 22963379
Detailed biosynthetic pathway to decaprenoxanthin diglucoside in Corynebacterium glutamicum and identification of novel intermediates.
Krubasik P, Takaichi S, Maoka T, Kobayashi M, Masamoto K, Sandmann G., Arch. Microbiol. 176(3), 2001
PMID: 11511870
Production of the sesquiterpene (+)-valencene by metabolically engineered Corynebacterium glutamicum.
Frohwitter J, Heider SA, Peters-Wendisch P, Beekwilder J, Wendisch VF., J. Biotechnol. 191(), 2014
PMID: 24910970
Light-Controlled Cell Factories: Employing Photocaged Isopropyl-β-d-Thiogalactopyranoside for Light-Mediated Optimization of lac Promoter-Based Gene Expression and (+)-Valencene Biosynthesis in Corynebacterium glutamicum.
Binder D, Frohwitter J, Mahr R, Bier C, Grunberger A, Loeschcke A, Peters-Wendisch P, Kohlheyer D, Pietruszka J, Frunzke J, Jaeger KE, Wendisch VF, Drepper T., Appl. Environ. Microbiol. 82(20), 2016
PMID: 27520809
Optimization of the IPP Precursor Supply for the Production of Lycopene, Decaprenoxanthin and Astaxanthin by Corynebacterium glutamicum.
Heider SA, Wolf N, Hofemeier A, Peters-Wendisch P, Wendisch VF., Front Bioeng Biotechnol 2(), 2014
PMID: 25191655
Production and glucosylation of C50 and C 40 carotenoids by metabolically engineered Corynebacterium glutamicum.
Heider SA, Peters-Wendisch P, Netzer R, Stafnes M, Brautaset T, Wendisch VF., Appl. Microbiol. Biotechnol. 98(3), 2013
PMID: 24270893
Isoprenoid Pyrophosphate-Dependent Transcriptional Regulation of Carotenogenesis in Corynebacterium glutamicum.
Henke NA, Heider SAE, Hannibal S, Wendisch VF, Peters-Wendisch P., Front Microbiol 8(), 2017
PMID: 28484430
Coproduction of cell-bound and secreted value-added compounds: Simultaneous production of carotenoids and amino acids by Corynebacterium glutamicum
Henke N.A., Wiebe D., Pérez-García F., Peters-Wendisch P., Wendisch V.F.., 2018
Taxonomical studies on glutamic acid producing bacteria
Abe S., Takayarna K., Kinoshita S.., 1967

Eggeling L., Bott M.., 2005
Studies on transformation of Escherichia coli with plasmids.
Hanahan D., J. Mol. Biol. 166(4), 1983
PMID: 6345791
Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production.
Stansen C, Uy D, Delaunay S, Eggeling L, Goergen JL, Wendisch VF., Appl. Environ. Microbiol. 71(10), 2005
PMID: 16204505
Accelerated pentose utilization by Corynebacterium glutamicum for accelerated production of lysine, glutamate, ornithine and putrescine.
Meiswinkel TM, Gopinath V, Lindner SN, Nampoothiri KM, Wendisch VF., Microb Biotechnol 6(2), 2012
PMID: 23164409
Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum.
Peters-Wendisch PG, Schiel B, Wendisch VF, Katsoulidis E, Mockel B, Sahm H, Eikmanns BJ., J. Mol. Microbiol. Biotechnol. 3(2), 2001
PMID: 11321586
Enzymatic assembly of DNA molecules up to several hundred kilobases.
Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO., Nat. Methods 6(5), 2009
PMID: 19363495

Sambrook J., Russell D.., 2001
IdsA is the major geranylgeranyl pyrophosphate synthase involved in carotenogenesis in Corynebacterium glutamicum.
Heider SA, Peters-Wendisch P, Beekwilder J, Wendisch VF., FEBS J. 281(21), 2014
PMID: 25181035
Production of the Marine Carotenoid Astaxanthin by Metabolically Engineered Corynebacterium glutamicum.
Henke NA, Heider SA, Peters-Wendisch P, Wendisch VF., Mar Drugs 14(7), 2016
PMID: 27376307
Amino acid production from rice straw and wheat bran hydrolysates by recombinant pentose-utilizing Corynebacterium glutamicum.
Gopinath V, Meiswinkel TM, Wendisch VF, Nampoothiri KM., Appl. Microbiol. Biotechnol. 92(5), 2011
PMID: 21796382
Microbial Cell Factories for the Production of Terpenoid Flavor and Fragrance Compounds.
Schempp FM, Drummond L, Buchhaupt M, Schrader J., J. Agric. Food Chem. 66(10), 2017
PMID: 28418659
Tools and techniques for solvent selection: Green solvent selection guides
Byrne F.P., Jin S., Paggiola G., Petchey T.H.M., Clark J.H., Farmer T.J., Hunt A.J., Robert C., Sherwood J.., 2016
Alternative solvents for natural products extraction
Muniglia L., Claisse N., Baudelet P.-H., Ricochon G.., 2014
Evidence of isoprenoid precursor toxicity in Bacillus subtilis.
Sivy TL, Fall R, Rosenstiel TN., Biosci. Biotechnol. Biochem. 75(12), 2011
PMID: 22146731
Characterisation of a Recombinant Patchoulol Synthase Variant for Biocatalytic Production of Terpenes.
Frister T, Hartwig S, Alemdar S, Schnatz K, Thons L, Scheper T, Beutel S., Appl. Biochem. Biotechnol. 176(8), 2015
PMID: 26100386
Isoprenoid drugs, biofuels, and chemicals--artemisinin, farnesene, and beyond.
George KW, Alonso-Gutierrez J, Keasling JD, Lee TS., Adv. Biochem. Eng. Biotechnol. 148(), 2015
PMID: 25577395
Pray T.., 2010
High-level production of amorpha-4,11-diene, a precursor of the antimalarial agent artemisinin, in Escherichia coli.
Tsuruta H, Paddon CJ, Eng D, Lenihan JR, Horning T, Anthony LC, Regentin R, Keasling JD, Renninger NS, Newman JD., PLoS ONE 4(2), 2009
PMID: 19221601
Material in PUB:
Dissertation, die diesen PUB Eintrag enthält


Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®


PMID: 29673223
PubMed | Europe PMC

Suchen in

Google Scholar