Quantitative modelling of nutrient-limited growth of bacterial colonies in microfluidic cultivation

Hornung R, Grünberger A, Westerwalbesloh C, Kohlheyer D, Gompper G, Elgeti J (2018)
JOURNAL OF THE ROYAL SOCIETY INTERFACE 15(139): 11.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ;
Abstract / Bemerkung
Nutrient gradients and limitations play a pivotal role in the life of all microbes, both in their natural habitat as well as in artificial, microfluidic systems. Spatial concentration gradients of nutrients in densely packed cell configurations may locally affect the bacterial growth leading to heterogeneous micropopulations. A detailed understanding and quantitative modelling of cellular behaviour under nutrient limitations is thus highly desirable. We use microfluidic cultivations to investigate growth and microbial behaviour of the model organism Corynebacterium glutamicum under well controlled conditions. With a reaction-diffusion-type model, parameters are extracted from steady-state experiments with a one-dimensional nutrient gradient. Subsequently, we employ particle-based simulations with these parameters to predict the dynamical growth of a colony in two dimensions. Comparing the results of those simulations with microfluidic experiments yields excellent agreement. Our modelling approach lays the foundation for a better understanding of dynamic microbial growth processes, both in nature and in applied biotechnology.
Erscheinungsjahr
Zeitschriftentitel
JOURNAL OF THE ROYAL SOCIETY INTERFACE
Band
15
Ausgabe
139
Art.-Nr.
11
ISSN
eISSN
PUB-ID

Zitieren

Hornung R, Grünberger A, Westerwalbesloh C, Kohlheyer D, Gompper G, Elgeti J. Quantitative modelling of nutrient-limited growth of bacterial colonies in microfluidic cultivation. JOURNAL OF THE ROYAL SOCIETY INTERFACE. 2018;15(139): 11.
Hornung, R., Grünberger, A., Westerwalbesloh, C., Kohlheyer, D., Gompper, G., & Elgeti, J. (2018). Quantitative modelling of nutrient-limited growth of bacterial colonies in microfluidic cultivation. JOURNAL OF THE ROYAL SOCIETY INTERFACE, 15(139), 11. doi:10.1098/rsif.2017.0713
Hornung, R., Grünberger, A., Westerwalbesloh, C., Kohlheyer, D., Gompper, G., and Elgeti, J. (2018). Quantitative modelling of nutrient-limited growth of bacterial colonies in microfluidic cultivation. JOURNAL OF THE ROYAL SOCIETY INTERFACE 15:11.
Hornung, R., et al., 2018. Quantitative modelling of nutrient-limited growth of bacterial colonies in microfluidic cultivation. JOURNAL OF THE ROYAL SOCIETY INTERFACE, 15(139): 11.
R. Hornung, et al., “Quantitative modelling of nutrient-limited growth of bacterial colonies in microfluidic cultivation”, JOURNAL OF THE ROYAL SOCIETY INTERFACE, vol. 15, 2018, : 11.
Hornung, R., Grünberger, A., Westerwalbesloh, C., Kohlheyer, D., Gompper, G., Elgeti, J.: Quantitative modelling of nutrient-limited growth of bacterial colonies in microfluidic cultivation. JOURNAL OF THE ROYAL SOCIETY INTERFACE. 15, : 11 (2018).
Hornung, Raphael, Grünberger, Alexander, Westerwalbesloh, Christoph, Kohlheyer, Dietrich, Gompper, Gerhard, and Elgeti, Jens. “Quantitative modelling of nutrient-limited growth of bacterial colonies in microfluidic cultivation”. JOURNAL OF THE ROYAL SOCIETY INTERFACE 15.139 (2018): 11.

1 Zitation in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Quantitative modelling of nutrient-limited growth of bacterial colonies in microfluidic cultivation.
Hornung R, Grünberger A, Westerwalbesloh C, Kohlheyer D, Gompper G, Elgeti J., J R Soc Interface 15(139), 2018
PMID: 29445038

34 References

Daten bereitgestellt von Europe PubMed Central.

Beyond growth rate 0.6: What drives Corynebacterium glutamicum to higher growth rates in defined medium.
Unthan S, Grunberger A, van Ooyen J, Gatgens J, Heinrich J, Paczia N, Wiechert W, Kohlheyer D, Noack S., Biotechnol. Bioeng. 111(2), 2013
PMID: 23996851
Modeling and CFD simulation of nutrient distribution in picoliter bioreactors for bacterial growth studies on single-cell level.
Westerwalbesloh C, Grunberger A, Stute B, Weber S, Wiechert W, Kohlheyer D, von Lieres E., Lab Chip 15(21), 2015
PMID: 26345659
Single cell analytics: an overview.
Kortmann H, Blank LM, Schmid A., Adv. Biochem. Eng. Biotechnol. 124(), 2011
PMID: 21072695
Antibiotic resistance: a physicist's view.
Allen R, Waclaw B., Phys Biol 13(4), 2016
PMID: 27510596
Single-cell microfluidics: opportunity for bioprocess development.
Grunberger A, Wiechert W, Kohlheyer D., Curr. Opin. Biotechnol. 29(), 2014
PMID: 24642389
Calculation of effective diffusivities for biofilms and tissues.
Wood BD, Quintard M, Whitaker S., Biotechnol. Bioeng. 77(5), 2002
PMID: 11788949
Cell-size control and homeostasis in bacteria.
Taheri-Araghi S, Bradde S, Sauls JT, Hill NS, Levin PA, Paulsson J, Vergassola M, Jun S., Curr. Biol. 25(3), 2014
PMID: 25544609
A disposable picolitre bioreactor for cultivation and investigation of industrially relevant bacteria on the single cell level.
Grunberger A, Paczia N, Probst C, Schendzielorz G, Eggeling L, Noack S, Wiechert W, Kohlheyer D., Lab Chip 12(11), 2012
PMID: 22511122
Microfluidic picoliter bioreactor for microbial single-cell analysis: fabrication, system setup, and operation.
Gruenberger A, Probst C, Heyer A, Wiechert W, Frunzke J, Kohlheyer D., J Vis Exp (82), 2013
PMID: 24336165
Streaming instability in growing cell populations.
Mather W, Mondragon-Palomino O, Danino T, Hasty J, Tsimring LS., Phys. Rev. Lett. 104(20), 2010
PMID: 20867071
Growth factors in mammalian cell culture.
Gospodarowicz D, Moran JS., Annu. Rev. Biochem. 45(), 1976
PMID: 786157
Vascularization strategies for tissue engineering.
Lovett M, Lee K, Edwards A, Kaplan DL., Tissue Eng Part B Rev 15(3), 2009
PMID: 19496677
Dissipative particle dynamics simulations for biological tissues: rheology and competition.
Basan M, Prost J, Joanny JF, Elgeti J., Phys Biol 8(2), 2011
PMID: 21460431
Multicellular tumor spheroids: an underestimated tool is catching up again.
Hirschhaeuser F, Menne H, Dittfeld C, West J, Mueller-Klieser W, Kunz-Schughart LA., J. Biotechnol. 148(1), 2010
PMID: 20097238
Spatial organization of the extracellular matrix regulates cell-cell junction positioning.
Tseng Q, Duchemin-Pelletier E, Deshiere A, Balland M, Guillou H, Filhol O, Thery M., Proc. Natl. Acad. Sci. U.S.A. 109(5), 2012
PMID: 22307605
The role of mechanical forces in the planar-to-bulk transition in growing Escherichia coli microcolonies.
Grant MA, Waclaw B, Allen RJ, Cicuta P., J R Soc Interface 11(97), 2014
PMID: 24920113
Microfluidic organs-on-chips.
Bhatia SN, Ingber DE., Nat. Biotechnol. 32(8), 2014
PMID: 25093883
Mechanical interactions in bacterial colonies and the surfing probability of beneficial mutations.
Farrell FD, Gralka M, Hallatschek O, Waclaw B., J R Soc Interface 14(131), 2017
PMID: 28592660
Diffusion in biofilms.
Stewart PS., J. Bacteriol. 185(5), 2003
PMID: 12591863
Metabolic co-dependence gives rise to collective oscillations within biofilms.
Liu J, Prindle A, Humphries J, Gabalda-Sagarra M, Asally M, Lee DY, Ly S, Garcia-Ojalvo J, Suel GM., Nature 523(7562), 2015
PMID: 26200335
Spatiotemporal microbial single-cell analysis using a high-throughput microfluidics cultivation platform.
Grunberger A, Probst C, Helfrich S, Nanda A, Stute B, Wiechert W, von Lieres E, Noh K, Frunzke J, Kohlheyer D., Cytometry A 87(12), 2015
PMID: 26348020
Biofilms: microbial life on surfaces.
Donlan RM., Emerging Infect. Dis. 8(9), 2002
PMID: 12194761
From 3D cell culture to organs-on-chips.
Huh D, Hamilton GA, Ingber DE., Trends Cell Biol. 21(12), 2011
PMID: 22033488
Quantitative modelling of nutrient-limited growth of bacterial colonies in microfluidic cultivation.
Hornung R, Grunberger A, Westerwalbesloh C, Kohlheyer D, Gompper G, Elgeti J., J R Soc Interface 15(139), 2018
PMID: 29445038
Shaping the Growth Behaviour of Biofilms Initiated from Bacterial Aggregates.
Melaugh G, Hutchison J, Kragh KN, Irie Y, Roberts A, Bjarnsholt T, Diggle SP, Gordon VD, Allen RJ., PLoS ONE 11(3), 2016
PMID: 26934187
Robust growth of Escherichia coli.
Wang P, Robert L, Pelletier J, Dang WL, Taddei F, Wright A, Jun S., Curr. Biol. 20(12), 2010
PMID: 20537537
Self-Driven Jamming in Growing Microbial Populations.
Delarue M, Hartung J, Schreck C, Gniewek P, Hu L, Herminghaus S, Hallatschek O., Nat Phys 12(8), 2016
PMID: 27642362
Mechanically driven growth of quasi-two-dimensional microbial colonies.
Farrell FD, Hallatschek O, Marenduzzo D, Waclaw B., Phys. Rev. Lett. 111(16), 2013
PMID: 24182305
Chemical and biological single cell analysis.
Schmid A, Kortmann H, Dittrich PS, Blank LM., Curr. Opin. Biotechnol. 21(1), 2010
PMID: 20167469
Homeostatic competition drives tumor growth and metastasis nucleation.
Basan M, Risler T, Joanny JF, Sastre-Garau X, Prost J., HFSP J 3(4), 2009
PMID: 20119483
Stress clamp experiments on multicellular tumor spheroids.
Montel F, Delarue M, Elgeti J, Malaquin L, Basan M, Risler T, Cabane B, Vignjevic D, Prost J, Cappello G, Joanny JF., Phys. Rev. Lett. 107(18), 2011
PMID: 22107677
The effect of geometry on three-dimensional tissue growth.
Rumpler M, Woesz A, Dunlop JW, van Dongen JT, Fratzl P., J R Soc Interface 5(27), 2008
PMID: 18348957
The origins and the future of microfluidics.
Whitesides GM., Nature 442(7101), 2006
PMID: 16871203

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 29445038
PubMed | Europe PMC

Suchen in

Google Scholar