Optimal multiguidance integration in insect navigation

Hoinville T, Wehner R (2018)
Proceedings of the National Academy of Sciences of the United States of America 115(11): 2824-2829.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Hoinville, ThierryUniBi; Wehner, Rudiger
Abstract / Bemerkung
In the last decades, desert ants have become model organisms for the study of insect navigation. In finding their way, they use two major navigational routines: path integration using a celestial compass and landmark guidance based on sets of panoramic views of the terrestrial environment. It has been claimed that this information would enable the insect to acquire and use a centralized cognitive map of its foraging terrain. Here, we present a decentralized architecture, in which the concurrently operating path integration and landmark guidance routines contribute optimally to the directions to be steered, with "optimal" meaning maximizing the certainty (reliability) of the combined information. At any one time during its journey, the animal computes a path integration (global) vector and landmark guidance (local) vector, in which the length of each vector is proportional to the certainty of the individual estimates. Hence, these vectors represent the limited knowledge that the navigator has at any one place about the direction of the goal. The sum of the global and local vectors indicates the navigator's optimal directional estimate. Wherever applied, this decentralized model architecture is sufficient to simulate the results of quite a number of diverse cue-conflict experiments, which have recently been performed in various behavioral contexts by different authors in both desert ants and honeybees. They include even those experiments that have deliberately been designed by former authors to strengthen the evidence for a metric cognitive map in bees.
Stichworte
multisensory; vector field; path integration; compass; cue-conflict
Erscheinungsjahr
2018
Zeitschriftentitel
Proceedings of the National Academy of Sciences of the United States of America
Band
115
Ausgabe
11
Seite(n)
2824-2829
ISSN
0027-8424
Page URI
https://pub.uni-bielefeld.de/record/2919055

Zitieren

Hoinville T, Wehner R. Optimal multiguidance integration in insect navigation. Proceedings of the National Academy of Sciences of the United States of America. 2018;115(11):2824-2829.
Hoinville, T., & Wehner, R. (2018). Optimal multiguidance integration in insect navigation. Proceedings of the National Academy of Sciences of the United States of America, 115(11), 2824-2829. doi:10.1073/pnas.1721668115
Hoinville, Thierry, and Wehner, Rudiger. 2018. “Optimal multiguidance integration in insect navigation”. Proceedings of the National Academy of Sciences of the United States of America 115 (11): 2824-2829.
Hoinville, T., and Wehner, R. (2018). Optimal multiguidance integration in insect navigation. Proceedings of the National Academy of Sciences of the United States of America 115, 2824-2829.
Hoinville, T., & Wehner, R., 2018. Optimal multiguidance integration in insect navigation. Proceedings of the National Academy of Sciences of the United States of America, 115(11), p 2824-2829.
T. Hoinville and R. Wehner, “Optimal multiguidance integration in insect navigation”, Proceedings of the National Academy of Sciences of the United States of America, vol. 115, 2018, pp. 2824-2829.
Hoinville, T., Wehner, R.: Optimal multiguidance integration in insect navigation. Proceedings of the National Academy of Sciences of the United States of America. 115, 2824-2829 (2018).
Hoinville, Thierry, and Wehner, Rudiger. “Optimal multiguidance integration in insect navigation”. Proceedings of the National Academy of Sciences of the United States of America 115.11 (2018): 2824-2829.

2 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

The Central Complex as a Potential Substrate for Vector Based Navigation.
Le Moël F, Stone T, Lihoreau M, Wystrach A, Webb B., Front Psychol 10(), 2019
PMID: 31024377
Two distance memories in desert ants-Modes of interaction.
Wolf H, Wittlinger M, Pfeffer SE., PLoS One 13(10), 2018
PMID: 30304010

47 References

Daten bereitgestellt von Europe PubMed Central.

How do insects use path integration for their navigation?
Collett M, Collett TS., Biol Cybern 83(3), 2000
PMID: 11007299

Wehner R, Srinivasan MV., 2003
The significance of direct sunlight and polarized skylight in the ant's celestial system of navigation.
Wehner R, Muller M., Proc. Natl. Acad. Sci. U.S.A. 103(33), 2006
PMID: 16888039
Wind and sky as compass cues in desert ant navigation.
Muller M, Wehner R., Naturwissenschaften 94(7), 2007
PMID: 17361400
The ant odometer: stepping on stilts and stumps.
Wittlinger M, Wehner R, Wolf H., Science 312(5782), 2006
PMID: 16809544
Optic flow odometry operates independently of stride integration in carried ants.
Pfeffer SE, Wittlinger M., Science 353(6304), 2016
PMID: 27609893
Ontogeny of learning walks and the acquisition of landmark information in desert ants, Cataglyphis fortis.
Fleischmann PN, Christian M, Muller VL, Rossler W, Wehner R., J. Exp. Biol. 219(Pt 19), 2016
PMID: 27481270
How Wasps Acquire and Use Views for Homing.
Sturzl W, Zeil J, Boeddeker N, Hemmi JM., Curr. Biol. 26(4), 2016
PMID: 26877083
Spatial memory in insect navigation.
Collett M, Chittka L, Collett TS., Curr. Biol. 23(17), 2013
PMID: 24028962
Landmark learning in bees
Cartwright BA, Collett TS., 1983
Catchment areas of panoramic snapshots in outdoor scenes
Zeil J, Hofmann MI, Chahl JS., 2003
Depth, contrast and view-based homing in outdoor scenes.
Sturzl W, Zeil J., Biol Cybern 96(5), 2007
PMID: 17443340
Insect navigation
Graham P., 2010
Visual homing: an insect perspective.
Zeil J., Curr. Opin. Neurobiol. 22(2), 2012
PMID: 22221863
Three-dimensional models of natural environments and the mapping of navigational information
Stürzl W, Grixa I, Mair E, Narendra A, Zeil J., 2015
Path integration in desert ants, Cataglyphis: How to make a homing ant run away from home
Andel D, Wehner R., 2004
Visual navigation in ants: Evidence for site-based vectors
Bisch S, Wehner R., 1998
Do familiar landmarks reset the global path integration system of desert ants?
Collett M, Collett TS, Chameron S, Wehner R., J. Exp. Biol. 206(Pt 5), 2003
PMID: 12547942
No need for a cognitive map: Decentralized memory for insect navigation
Cruse H, Wehner R., 2011

Hoinville T, Wehner R, Cruse H., 2012
Nest-mark orientation versus vector navigation in desert ants.
Bregy P, Sommer S, Wehner R., J. Exp. Biol. 211(Pt 12), 2008
PMID: 18515716
Optimal cue integration in ants
Wystrach A, Mangan M, Webb B., 2015
Steering intermediate courses: Desert ants combine information from various navigational routines
Wehner R, Hoinville T, Cruse H, Cheng K., 2016
Way-finding in displaced clock-shifted bees proves bees use a cognitive map.
Cheeseman JF, Millar CD, Greggers U, Lehmann K, Pawley MD, Gallistel CR, Warman GR, Menzel R., Proc. Natl. Acad. Sci. U.S.A. 111(24), 2014
PMID: 24889633
The Bayesian brain: the role of uncertainty in neural coding and computation.
Knill DC, Pouget A., Trends Neurosci. 27(12), 2004
PMID: 15541511
Cue combination on the circle and the sphere.
Murray RF, Morgenstern Y., J Vis 10(11), 2010
PMID: 20884510

de B., 1974
General anesthesia alters time perception by phase shifting the circadian clock.
Cheeseman JF, Winnebeck EC, Millar CD, Kirkland LS, Sleigh J, Goodwin M, Pawley MD, Bloch G, Lehmann K, Menzel R, Warman GR., Proc. Natl. Acad. Sci. U.S.A. 109(18), 2012
PMID: 22509009

von K., 1967
Honey bees navigate according to a map-like spatial memory.
Menzel R, Greggers U, Smith A, Berger S, Brandt R, Brunke S, Bundrock G, Hulse S, Plumpe T, Schaupp F, Schuttler E, Stach S, Stindt J, Stollhoff N, Watzl S., Proc. Natl. Acad. Sci. U.S.A. 102(8), 2005
PMID: 15710880
The desert ant’s navigational toolkit: Procedural rather than positional knowledge
Wehner R., 2008
The role of multimodal convergence in homing by path integration
Mittelstaedt H., 1983
Neural dynamics for landmark orientation and angular path integration.
Seelig JD, Jayaraman V., Nature 521(7551), 2015
PMID: 25971509
Neuroethology: unweaving the senses of direction.
Heinze S., Curr. Biol. 25(21), 2015
PMID: 26528743
An Anatomically Constrained Model for Path Integration in the Bee Brain.
Stone T, Webb B, Adden A, Weddig NB, Honkanen A, Templin R, Wcislo W, Scimeca L, Warrant E, Heinze S., Curr. Biol. 27(20), 2017
PMID: 28988858
Finding the way with a noisy brain
Cheung A, Vickerstaff R., 2010
Which coordinate system for modelling path integration?
Vickerstaff RJ, Cheung A., J. Theor. Biol. 263(2), 2009
PMID: 19962387
Mushroom body memoir: from maps to models.
Heisenberg M., Nat. Rev. Neurosci. 4(4), 2003
PMID: 12671643
Using an Insect Mushroom Body Circuit to Encode Route Memory in Complex Natural Environments.
Ardin P, Peng F, Mangan M, Lagogiannis K, Webb B., PLoS Comput. Biol. 12(2), 2016
PMID: 26866692

Mardia KV, Jupp PE., 2000
Animal cognition: multi-modal interactions in ant learning.
Graham P, Philippides A, Baddeley B., Curr. Biol. 20(15), 2010
PMID: 20692612
What is the relationship between visual environment and the form of ant learning-walks? An in silico investigation of insect navigation
Dewar AD, Philippides A, Graham P., 2014
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 29483254
PubMed | Europe PMC

Suchen in

Google Scholar