Technical feasibility study for production of tailored multielectrode arrays and patterning of arranged neuronal networks

Schürmann M, Shepheard N, Frese N, Geishendorf K, Sudhoff H, Gölzhäuser A, Rückert U, Kaltschmidt C, Kaltschmidt B, Thomas A (2018)
PLOS ONE 13(2): e0192647.

Download
OA 14.16 MB
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Volltext vorhanden für diesen Nachweis
Abstract / Bemerkung
In this manuscript, we first reveal a simple ultra violet laser lithographic method to design and produce plain tailored multielectrode arrays. Secondly, we use the same lithographic setup for surface patterning to enable controlled attachment of primary neuronal cells and help neurite guidance. For multielectrode array production, we used flat borosilicate glass directly structured with the laser lithography system. The multi layered electrode system consists of a layer of titanium coated with a layer of di-titanium nitride. Finally, these electrodes are covered with silicon nitride for insulation. The quality of the custom made multielectrode arrays was investigated by light microscopy, electron microscopy and X-ray diffraction. The performance was verified by the detection of action potentials of primary neurons. The electrical noise of the custom-made MEA was equal to commercially available multielectrode arrays. Additionally, we demonstrated that structured coating with poly lysine, obtained with the aid of the same lithographic system, could be used to attach and guide neurons to designed structures. The process of neuron attachment and neurite guidance was investigated by light microscopy and charged particle microscopy. Importantly, the utilization of the same lithographic system for MEA fabrication and poly lysine structuring will make it easy to align the architecture of the neuronal network to the arrangement of the MEA electrode.. In future studies, this will lead to multielectrode arrays, which are able to specifically attach neuronal cell bodies to their chemically defined electrodes and guide their neurites, gaining a controlled connectivity in the neuronal network. This type of multielectrode array would be able to precisely assign a signal to a certain neuron resulting in an efficient way for analyzing the maturation of the neuronal connectivity in small neuronal networks.
Erscheinungsjahr
Zeitschriftentitel
PLOS ONE
Band
13
Ausgabe
2
Art.-Nr.
e0192647
ISSN
Finanzierungs-Informationen
Article Processing Charge funded by the Deutsche Forschungsgemeinschaft and the Open Access Publication Fund of Bielefeld University.
PUB-ID

Zitieren

Schürmann M, Shepheard N, Frese N, et al. Technical feasibility study for production of tailored multielectrode arrays and patterning of arranged neuronal networks. PLOS ONE. 2018;13(2): e0192647.
Schürmann, M., Shepheard, N., Frese, N., Geishendorf, K., Sudhoff, H., Gölzhäuser, A., Rückert, U., et al. (2018). Technical feasibility study for production of tailored multielectrode arrays and patterning of arranged neuronal networks. PLOS ONE, 13(2), e0192647. doi:10.1371/journal.pone.0192647
Schürmann, M., Shepheard, N., Frese, N., Geishendorf, K., Sudhoff, H., Gölzhäuser, A., Rückert, U., Kaltschmidt, C., Kaltschmidt, B., and Thomas, A. (2018). Technical feasibility study for production of tailored multielectrode arrays and patterning of arranged neuronal networks. PLOS ONE 13:e0192647.
Schürmann, M., et al., 2018. Technical feasibility study for production of tailored multielectrode arrays and patterning of arranged neuronal networks. PLOS ONE, 13(2): e0192647.
M. Schürmann, et al., “Technical feasibility study for production of tailored multielectrode arrays and patterning of arranged neuronal networks”, PLOS ONE, vol. 13, 2018, : e0192647.
Schürmann, M., Shepheard, N., Frese, N., Geishendorf, K., Sudhoff, H., Gölzhäuser, A., Rückert, U., Kaltschmidt, C., Kaltschmidt, B., Thomas, A.: Technical feasibility study for production of tailored multielectrode arrays and patterning of arranged neuronal networks. PLOS ONE. 13, : e0192647 (2018).
Schürmann, Matthias, Shepheard, Norman, Frese, Natalie, Geishendorf, Kevin, Sudhoff, Holger, Gölzhäuser, Armin, Rückert, Ulrich, Kaltschmidt, Christian, Kaltschmidt, Barbara, and Thomas, Andy. “Technical feasibility study for production of tailored multielectrode arrays and patterning of arranged neuronal networks”. PLOS ONE 13.2 (2018): e0192647.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2018-04-09T09:57:45Z

48 References

Daten bereitgestellt von Europe PubMed Central.

Modeled channel distributions explain extracellular recordings from cultured neurons sealed to microelectrodes.
Buitenweg JR, Rutten WL, Marani E., IEEE Trans Biomed Eng 49(12 Pt 2), 2002
PMID: 12549740
A miniature microelectrode array to monitor the bioelectric activity of cultured cells.
Thomas CA Jr, Springer PA, Loeb GE, Berwald-Netter Y, Okun LM., Exp. Cell Res. 74(1), 1972
PMID: 4672477
Biological application of microelectrode arrays in drug discovery and basic research.
Stett A, Egert U, Guenther E, Hofmann F, Meyer T, Nisch W, Haemmerle H., Anal Bioanal Chem 377(3), 2003
PMID: 12923608
Adult neural progenitor cells reactivate superbursting in mature neural networks.
Stephens CL, Toda H, Palmer TD, DeMarse TB, Ormerod BK., Exp. Neurol. 234(1), 2011
PMID: 22198136
Emergence of a small-world functional network in cultured neurons.
Downes JH, Hammond MW, Xydas D, Spencer MC, Becerra VM, Warwick K, Whalley BJ, Nasuto SJ., PLoS Comput. Biol. 8(5), 2012
PMID: 22615555
Hippocampal networks on reliable patterned substrates.
Boehler MD, Leondopulos SS, Wheeler BC, Brewer GJ., J. Neurosci. Methods 203(2), 2011
PMID: 21985763
Effects of the Hybridization of Opioid and Neurotensin Pharmacophores on Cell Survival in Rat Organotypic Hippocampal Slice Cultures.
Kleczkowska P, Kawalec M, Bujalska-Zadrozny M, Filip M, Zablocka B, Lipkowski AW., Neurotox Res 28(4), 2015
PMID: 26286504
Step-by-step instructions for retina recordings with perforated multi electrode arrays.
Reinhard K, Tikidji-Hamburyan A, Seitter H, Idrees S, Mutter M, Benkner B, Munch TA., PLoS ONE 9(8), 2014
PMID: 25165854
Tumor necrosis factor enhances the sleep-like state and electrical stimulation induces a wake-like state in co-cultures of neurons and glia.
Jewett KA, Taishi P, Sengupta P, Roy S, Davis CJ, Krueger JM., Eur. J. Neurosci. 42(4), 2015
PMID: 26036796
A method for electrophysiological characterization of hamster retinal ganglion cells using a high-density CMOS microelectrode array.
Jones IL, Russell TL, Farrow K, Fiscella M, Franke F, Muller J, Jackel D, Hierlemann A., Front Neurosci 9(), 2015
PMID: 26528115

AUTHOR UNKNOWN, 0
A 128/spl times/128 CMOS biosensor array for extracellular recording of neural activity
AUTHOR UNKNOWN, 2003
High-resolution CMOS MEA platform to study neurons at subcellular, cellular, and network levels.
Muller J, Ballini M, Livi P, Chen Y, Radivojevic M, Shadmani A, Viswam V, Jones IL, Fiscella M, Diggelmann R, Stettler A, Frey U, Bakkum DJ, Hierlemann A., Lab Chip 15(13), 2015
PMID: 25973786
Spike Detection for Large Neural Populations Using High Density Multielectrode Arrays.
Muthmann JO, Amin H, Sernagor E, Maccione A, Panas D, Berdondini L, Bhalla US, Hennig MH., Front Neuroinform 9(), 2015
PMID: 26733859
Microelectronics, bioinformatics and neurocomputation for massive neuronal recordings in brain circuits with large scale multielectrode array probes.
Maccione A, Gandolfo M, Zordan S, Amin H, Di Marco S, Nieus T, Angotzi GN, Berdondini L., Brain Res. Bull. 119(Pt B), 2015
PMID: 26232511
Controlled outgrowth of dissociated neurons on patterned substrates.
Kleinfeld D, Kahler KH, Hockberger PE., J. Neurosci. 8(11), 1988
PMID: 3054009
Compliance of hippocampal neurons to patterned substrate networks.
Corey JM, Wheeler BC, Brewer GJ., J. Neurosci. Res. 30(2), 1991
PMID: 1798054
Soft lithography
AUTHOR UNKNOWN, 1998
Patterning proteins and cells using soft lithography.
Kane RS, Takayama S, Ostuni E, Ingber DE, Whitesides GM., Biomaterials 20(23-24), 1999
PMID: 10614942
Hsc70 is a novel interactor of NF-kappaB p65 in living hippocampal neurons.
Klenke C, Widera D, Engelen T, Muller J, Noll T, Niehaus K, Schmitz ML, Kaltschmidt B, Kaltschmidt C., PLoS ONE 8(6), 2013
PMID: 23762333
Helium Ion Microscopy Visualizes Lipid Nanodomains in Mammalian Cells.
Schurmann M, Frese N, Beyer A, Heimann P, Widera D, Monkemoller V, Huser T, Kaltschmidt B, Kaltschmidt C, Golzhauser A., Small 11(43), 2015
PMID: 26436577
Surface spectroscopic characterization of titanium implant materials
AUTHOR UNKNOWN, 1996
Composition of surface oxide film of titanium with culturing murine fibroblasts L929.
Hiromoto S, Hanawa T, Asami K., Biomaterials 25(6), 2004
PMID: 14615162
All titanium microelectrode array for field potential measurements from neurons and cardiomyocytes—a feasibility study
AUTHOR UNKNOWN, 2011

AUTHOR UNKNOWN, 0
Caged neuron MEA: a system for long-term investigation of cultured neural network connectivity.
Erickson J, Tooker A, Tai YC, Pine J., J. Neurosci. Methods 175(1), 2008
PMID: 18775453
Enhancement of neuronal cell adhesion by covalent binding of poly-D-lysine.
Kim YH, Baek NS, Han YH, Chung MA, Jung SD., J. Neurosci. Methods 202(1), 2011
PMID: 21907237
Adhesion and patterning of cortical neurons on polyethylenimine- and fluorocarbon-coated surfaces.
Ruardij TG, Goedbloed MH, Rutten WL., IEEE Trans Biomed Eng 47(12), 2000
PMID: 11125594
High-density micro-arrays for mass spectrometry.
Urban PL, Jefimovs K, Amantonico A, Fagerer SR, Schmid T, Madler S, Puigmarti-Luis J, Goedecke N, Zenobi R., Lab Chip 10(23), 2010
PMID: 20938499
Low-density neuronal networks cultured using patterned poly-l-lysine on microelectrode arrays.
Jun SB, Hynd MR, Dowell-Mesfin N, Smith KL, Turner JN, Shain W, Kim SJ., J. Neurosci. Methods 160(2), 2006
PMID: 17049614
Effects of substrate geometry on growth cone behavior and axon branching.
Withers GS, James CD, Kingman CE, Craighead HG, Banker GA., J. Neurobiol. 66(11), 2006
PMID: 16858695
Growing neuronal islands on multi-electrode arrays using an accurate positioning-μCP device.
Samhaber R, Schottdorf M, El Hady A, Broking K, Daus A, Thielemann C, Stuhmer W, Wolf F., J. Neurosci. Methods 257(), 2015
PMID: 26432934
Emergent functional properties of neuronal networks with controlled topology.
Marconi E, Nieus T, Maccione A, Valente P, Simi A, Messa M, Dante S, Baldelli P, Berdondini L, Benfenati F., PLoS ONE 7(4), 2012
PMID: 22493706
Low-density neuronal networks cultured using patterned poly-l-lysine on microelectrode arrays.
Jun SB, Hynd MR, Dowell-Mesfin N, Smith KL, Turner JN, Shain W, Kim SJ., J. Neurosci. Methods 160(2), 2006
PMID: 17049614
Epoxy-silane linking of biomolecules is simple and effective for patterning neuronal cultures.
Nam Y, Branch DW, Wheeler BC., Biosens Bioelectron 22(5), 2006
PMID: 16531038
Gold-coated microelectrode array with thiol linked self-assembled monolayers for engineering neuronal cultures.
Nam Y, Chang JC, Wheeler BC, Brewer GJ., IEEE Trans Biomed Eng 51(1), 2004
PMID: 14723505
Extracellular recordings from patterned neuronal networks using planar microelectrode arrays.
James CD, Spence AJ, Dowell-Mesfin NM, Hussain RJ, Smith KL, Craighead HG, Isaacson MS, Shain W, Turner JN., IEEE Trans Biomed Eng 51(9), 2004
PMID: 15376512
Aligned microcontact printing of micrometer-scale poly-L-lysine structures for controlled growth of cultured neurons on planar microelectrode arrays.
James CD, Davis R, Meyer M, Turner A, Turner S, Withers G, Kam L, Banker G, Craighead H, Isaacson M, Turner J, Shain W., IEEE Trans Biomed Eng 47(1), 2000
PMID: 10646274

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 29474358
PubMed | Europe PMC

Suchen in

Google Scholar