Metadata-driven computational (meta)genomics. A practical machine learning approach

Rumming M (2018)
Bielefeld: Universität Bielefeld.

Bielefelder E-Dissertation | Englisch
 
Download
OA
Gutachter*in / Betreuer*in
Sczyrba, AlexanderUniBi ; Chindelevitch, Leonid
Abstract / Bemerkung
A vast amount of bacterial and archaeal genomic sequences have been generated in the past decade through single cell sequencing and in particular binning of metagenomic sequences, but a detailed characterization of the functional features and observable phenotypes of such novel genomes is mostly unknown and thus missing. Machine learning models are trained on previously annotated organisms in relation to the mentioned traits and can be used for the characterization of so far undiscovered novel microbial organisms. The metadata is also used to enrich microbial community profiles with this kind of information, and a client-side webtool has been developed for comparative visualizations of these profiles.
Jahr
2018
Page URI
https://pub.uni-bielefeld.de/record/2918990

Zitieren

Rumming M. Metadata-driven computational (meta)genomics. A practical machine learning approach. Bielefeld: Universität Bielefeld; 2018.
Rumming, M. (2018). Metadata-driven computational (meta)genomics. A practical machine learning approach. Bielefeld: Universität Bielefeld.
Rumming, Madis. 2018. Metadata-driven computational (meta)genomics. A practical machine learning approach. Bielefeld: Universität Bielefeld.
Rumming, M. (2018). Metadata-driven computational (meta)genomics. A practical machine learning approach. Bielefeld: Universität Bielefeld.
Rumming, M., 2018. Metadata-driven computational (meta)genomics. A practical machine learning approach, Bielefeld: Universität Bielefeld.
M. Rumming, Metadata-driven computational (meta)genomics. A practical machine learning approach, Bielefeld: Universität Bielefeld, 2018.
Rumming, M.: Metadata-driven computational (meta)genomics. A practical machine learning approach. Universität Bielefeld, Bielefeld (2018).
Rumming, Madis. Metadata-driven computational (meta)genomics. A practical machine learning approach. Bielefeld: Universität Bielefeld, 2018.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:58Z
MD5 Prüfsumme
4022abf27493a02b3a9230239fc901fe


Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar