A Novel methodology for characterizing cell subpopulations in automated time-lapse microscopy

Hattab G, Wiesmann V, Becker A, Munzner T, Nattkemper TW (2018)
Frontiers in Bioengineering and Biotechnology 6: 17: 17.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 4.15 MB
Autor*in
Hattab, GeorgesUniBi ; Wiesmann, Veit; Becker, Anke; Munzner, Tamara; Nattkemper, Tim WilhelmUniBi
Abstract / Bemerkung
Time-lapse imaging of cell colonies in microfluidic chambers provides time series of bioimages, i.e., biomovies. They show the behavior of cells over time under controlled conditions. One of the main remaining bottlenecks in this area of research is the analysis of experimental data and the extraction of cell growth characteristics, such as lineage information. The extraction of the cell line by human observers is time-consuming and error-prone. Previously proposed methods often fail because of their reliance on the accurate detection of a single cell, which is not possible for high density, high diversity of cell shapes and numbers, and high-resolution images with high noise. Our task is to characterize subpopulations in biomovies. In order to shift the analysis of the data from individual cell level to cellular groups with similar fluorescence or even subpopulations, we propose to represent the cells by two new abstractions: the particle and the patch. We use a three-step framework: preprocessing, particle tracking, and construction of the patch lineage. First, preprocessing improves the signal-to-noise ratio and spatially aligns the biomovie frames. Second, cell sampling is performed by assuming particles, which represent a part of a cell, cell or group of contiguous cells in space. Particle analysis includes the following: particle tracking, trajectory linking, filtering, and color information, respectively. Particle tracking consists of following the spatiotemporal position of a particle and gives rise to coherent particle trajectories over time. Typical tracking problems may occur (e.g., appearance or disappearance of cells, spurious artifacts). They are effectively processed using trajectory linking and filtering. Third, the construction of the patch lineage consists in joining particle trajectories that share common attributes (i.e., proximity and fluorescence intensity) and feature common ancestry. This step is based on patch finding, patching trajectory propagation, patch splitting, and patch merging. The main idea is to group together the trajectories of particles in order to gain spatial coherence. The final result of CYCASP is the complete graph of the patch lineage. Finally, the graph encodes the temporal and spatial coherence of the development of cellular colonies. We present results showing a computation time of less than 5 min for biomovies and simulated films. The method, presented here, allowed for the separation of colonies into subpopulations and allowed us to interpret the growth of colonies in a timely manner.
Erscheinungsjahr
2018
Zeitschriftentitel
Frontiers in Bioengineering and Biotechnology
Band
6
Art.-Nr.
17
Seite(n)
17
ISSN
2296-4185
Page URI
https://pub.uni-bielefeld.de/record/2918218

Zitieren

Hattab G, Wiesmann V, Becker A, Munzner T, Nattkemper TW. A Novel methodology for characterizing cell subpopulations in automated time-lapse microscopy. Frontiers in Bioengineering and Biotechnology. 2018;6:17: 17.
Hattab, G., Wiesmann, V., Becker, A., Munzner, T., & Nattkemper, T. W. (2018). A Novel methodology for characterizing cell subpopulations in automated time-lapse microscopy. Frontiers in Bioengineering and Biotechnology, 6, 17., 17. doi:10.3389/fbioe.2018.00017
Hattab, G., Wiesmann, V., Becker, A., Munzner, T., and Nattkemper, T. W. (2018). A Novel methodology for characterizing cell subpopulations in automated time-lapse microscopy. Frontiers in Bioengineering and Biotechnology 6, 17:17.
Hattab, G., et al., 2018. A Novel methodology for characterizing cell subpopulations in automated time-lapse microscopy. Frontiers in Bioengineering and Biotechnology, 6, p 17: 17.
G. Hattab, et al., “A Novel methodology for characterizing cell subpopulations in automated time-lapse microscopy”, Frontiers in Bioengineering and Biotechnology, vol. 6, 2018, pp. 17, : 17.
Hattab, G., Wiesmann, V., Becker, A., Munzner, T., Nattkemper, T.W.: A Novel methodology for characterizing cell subpopulations in automated time-lapse microscopy. Frontiers in Bioengineering and Biotechnology. 6, 17 : 17 (2018).
Hattab, Georges, Wiesmann, Veit, Becker, Anke, Munzner, Tamara, and Nattkemper, Tim Wilhelm. “A Novel methodology for characterizing cell subpopulations in automated time-lapse microscopy”. Frontiers in Bioengineering and Biotechnology 6 (2018): 17: 17.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:57Z
MD5 Prüfsumme
7953cef4e6b749c1bb5e6f0ee135004b

2 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Computational Structural Biology: Successes, Future Directions, and Challenges.
Nussinov R, Tsai CJ, Shehu A, Jang H., Molecules 24(3), 2019
PMID: 30759724
SeeVis-3D space-time cube rendering for visualization of microfluidics image data.
Hattab G, Nattkemper TW., Bioinformatics 35(10), 2019
PMID: 30346487

30 References

Daten bereitgestellt von Europe PubMed Central.


Allan D., Caswell T., Keim N., van C.., 2015
Automated cell lineage tracing in Caenorhabditis elegans.
Bao Z, Murray JI, Boyle T, Ooi SL, Sandel MJ, Waterston RH., Proc. Natl. Acad. Sci. U.S.A. 103(8), 2006
PMID: 16477039
The OpenCV library
Bradski G.., 2000
Quorum sensing restrains growth and is rapidly inactivated during domestication of Sinorhizobium meliloti.
Charoenpanich P, Soto MJ, Becker A, McIntosh M., Environ Microbiol Rep 7(2), 2015
PMID: 25534533
Methods of digital video microscopy for colloidal studies
Crocker J., Grier D.., 1996
Bacterial pathogenesis: there is no I in team
David R.., 2013
Spatiotemporal microbial single-cell analysis using a high-throughput microfluidics cultivation platform.
Grunberger A, Probst C, Helfrich S, Nanda A, Stute B, Wiechert W, von Lieres E, Noh K, Frunzke J, Kohlheyer D., Cytometry A 87(12), 2015
PMID: 26348020
ViCAR: An Adaptive and Landmark-Free Registration of Time Lapse Image Data from Microfluidics Experiments.
Hattab G, Schluter JP, Becker A, Nattkemper TW., Front Genet 8(), 2017
PMID: 28620411
Live cell imaging of SOS and prophage dynamics in isogenic bacterial populations.
Helfrich S, Pfeifer E, Kramer C, Sachs CC, Wiechert W, Kohlheyer D, Noh K, Frunzke J., Mol. Microbiol. 98(4), 2015
PMID: 26235130
“Volume tracking using higher dimensional isosurfacing,”
Ji G., Shen H.-W., Wenger R.., 2003
“Cell image analysis: algorithms, system and applications,”
Kanade T., Yin Z., Bise R., Huh S., Eun S., Sandbothe M.., 2011
TLM-Tracker: software for cell segmentation, tracking and lineage analysis in time-lapse microscopy movies.
Klein J, Leupold S, Biegler I, Biedendieck R, Munch R, Jahn D., Bioinformatics 28(17), 2012
PMID: 22772947
Biigle 2.0-browsing and annotating large marine image collections
Langenkämper D., Zurowietz M., Schoening T., Nattkemper T.., 2017
Cell population tracking and lineage construction with spatiotemporal context.
Li K, Miller ED, Chen M, Kanade T, Weiss LE, Campbell PG., Med Image Anal 12(5), 2008
PMID: 18656418

McIntosh M., Bettenworth V.., 2017
BactImAS: a platform for processing and analysis of bacterial time-lapse microscopy movies.
Mekterovic I, Mekterovic D, Maglica Z., BMC Bioinformatics 15(), 2014
PMID: 25059528
A multiplexed microfluidic platform for rapid antibiotic susceptibility testing.
Mohan R, Mukherjee A, Sevgen SE, Sanpitakseree C, Lee J, Schroeder CM, Kenis PJ., Biosens Bioelectron 49(), 2013
PMID: 23728197
DNA Damage in Healthy Individuals and Respiratory Patients after Treating Whole Blood In vitro with the Bulk and Nano Forms of NSAIDs.
Najafzadeh M, Normington C, Jacob BK, Isreb M, Gopalan RC, Anderson D., Front Mol Biosci 3(), 2016
PMID: 27734017
A survey of visualization for live cell imaging
Pretorius A., Khan I., Errington R.., 2017

Rosenthal A., Qi Y., Hormoz S., Park J., Li S., Elowitz M.., 2017
Classification of phenotypic subpopulations in isogenic bacterial cultures by triple promoter probing at single cell level.
Schluter JP, Czuppon P, Schauer O, Pfaffelhuber P, McIntosh M, Becker A., J. Biotechnol. 198(), 2015
PMID: 25661839

Schlüter J.-P., McIntosh M., Hattab G., Nattkemper T., Becker A.., 2015
NIH Image to ImageJ: 25 years of image analysis.
Schneider CA, Rasband WS, Eliceiri KW., Nat. Methods 9(7), 2012
PMID: 22930834
Dynamic single-cell imaging of direct reprogramming reveals an early specifying event.
Smith ZD, Nachman I, Regev A, Meissner A., Nat. Biotechnol. 28(5), 2010
PMID: 20436460
High-throughput microfluidic system for long-term bacterial colony monitoring and antibiotic testing in zero-flow environments.
Sun P, Liu Y, Sha J, Zhang Z, Tu Q, Chen P, Wang J., Biosens Bioelectron 26(5), 2010
PMID: 20880691
Celltracer: software for automated image segmentation and lineage mapping for single-cell studies
Wang A., You L., West M.., 2005

Wiesmann V., Bergler M., Münzenmayer C., Wittenberg T.., 2017
Cell Simulation for Validation of Cell Micrograph Evaluation Algorithms.
Wiesmann V, Sauer T, Held C, Palmisano R, Wittenberg T., Biomed Tech (Berl) (), 2013
PMID: 24042916

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 29541635
PubMed | Europe PMC

Suchen in

Google Scholar