Redox-Sensing Under Hypochlorite Stress and Infection Conditions by the Rrf2-Family Repressor HypR in Staphylococcus aureus

Vu VL, Busche T, Tedin K, Bernhardt J, Wollenhaupt J, Huyen NTT, Weise C, Kalinowski J, Wahl MC, Fulde M, Antelmann H (2018)
ANTIOXIDANTS & REDOX SIGNALING 29(7): 22.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Vu, Van Loi; Busche, TobiasUniBi; Tedin, Karsten; Bernhardt, Jorg; Wollenhaupt, Jan; Huyen, Nguyen Thi Thu; Weise, Christoph; Kalinowski, JörnUniBi; Wahl, Markus C.; Fulde, Marcus; Antelmann, Haike
Abstract / Bemerkung
Aims: Staphylococcus aureus is a major human pathogen and has to cope with reactive oxygen and chlorine species (ROS, RCS) during infections, which requires efficient protection mechanisms to avoid destruction. Here, we have investigated the changes in the RNA-seq transcriptome by the strong oxidant sodium hypochlorite (NaOCl) in S. aureus USA300 to identify novel redox-sensing mechanisms that provide protection under infection conditions. Results: NaOCl stress caused an oxidative stress response in S. aureus as indicated by the induction of the PerR, QsrR, HrcA, and SigmaB regulons in the RNA-seq transcriptome. The hypR-merA (USA300HOU_0588-87) operon was most strongly upregulated under NaOCl stress, which encodes for the Rrf2-family regulator HypR and the pyridine nucleotide disulfide reductase MerA. We have characterized HypR as a novel redox-sensitive repressor that controls MerA expression and directly senses and responds to NaOCl and diamide stress via a thiol-based mechanism in S. aureus. Mutational analysis identified Cys33 and the conserved Cys99 as essential for NaOCl sensing, while Cys99 is also important for repressor activity of HypR in vivo. The redox-sensing mechanism of HypR involves Cys33-Cys99 intersubunit disulfide formation by NaOCl stress both in vitro and in vivo. Moreover, the HypR-controlled flavin disulfide reductase MerA was shown to protect S. aureus against NaOCl stress and increased survival in J774A.1 macrophage infection assays. Conclusion and Innovation: Here, we identified a new member of the widespread Rrf2 family as redox sensor of NaOCl stress in S. aureus that uses a thiol/disulfide switch to regulate defense mechanisms against the oxidative burst under infections in S. aureus. Antioxid. Redox Signal. 00, 000-000.
Stichworte
Staphylococcus aureus; Rrf2; redox-sensing regulator; hypochlorite; stress
Erscheinungsjahr
2018
Zeitschriftentitel
ANTIOXIDANTS & REDOX SIGNALING
Band
29
Ausgabe
7
Seite(n)
22
ISSN
1523-0864
eISSN
1557-7716
Page URI
https://pub.uni-bielefeld.de/record/2917736

Zitieren

Vu VL, Busche T, Tedin K, et al. Redox-Sensing Under Hypochlorite Stress and Infection Conditions by the Rrf2-Family Repressor HypR in Staphylococcus aureus. ANTIOXIDANTS & REDOX SIGNALING. 2018;29(7):22.
Vu, V. L., Busche, T., Tedin, K., Bernhardt, J., Wollenhaupt, J., Huyen, N. T. T., Weise, C., et al. (2018). Redox-Sensing Under Hypochlorite Stress and Infection Conditions by the Rrf2-Family Repressor HypR in Staphylococcus aureus. ANTIOXIDANTS & REDOX SIGNALING, 29(7), 22. doi:10.1089/ars.2017.7354
Vu, Van Loi, Busche, Tobias, Tedin, Karsten, Bernhardt, Jorg, Wollenhaupt, Jan, Huyen, Nguyen Thi Thu, Weise, Christoph, et al. 2018. “Redox-Sensing Under Hypochlorite Stress and Infection Conditions by the Rrf2-Family Repressor HypR in Staphylococcus aureus”. ANTIOXIDANTS & REDOX SIGNALING 29 (7): 22.
Vu, V. L., Busche, T., Tedin, K., Bernhardt, J., Wollenhaupt, J., Huyen, N. T. T., Weise, C., Kalinowski, J., Wahl, M. C., Fulde, M., et al. (2018). Redox-Sensing Under Hypochlorite Stress and Infection Conditions by the Rrf2-Family Repressor HypR in Staphylococcus aureus. ANTIOXIDANTS & REDOX SIGNALING 29, 22.
Vu, V.L., et al., 2018. Redox-Sensing Under Hypochlorite Stress and Infection Conditions by the Rrf2-Family Repressor HypR in Staphylococcus aureus. ANTIOXIDANTS & REDOX SIGNALING, 29(7), p 22.
V.L. Vu, et al., “Redox-Sensing Under Hypochlorite Stress and Infection Conditions by the Rrf2-Family Repressor HypR in Staphylococcus aureus”, ANTIOXIDANTS & REDOX SIGNALING, vol. 29, 2018, pp. 22.
Vu, V.L., Busche, T., Tedin, K., Bernhardt, J., Wollenhaupt, J., Huyen, N.T.T., Weise, C., Kalinowski, J., Wahl, M.C., Fulde, M., Antelmann, H.: Redox-Sensing Under Hypochlorite Stress and Infection Conditions by the Rrf2-Family Repressor HypR in Staphylococcus aureus. ANTIOXIDANTS & REDOX SIGNALING. 29, 22 (2018).
Vu, Van Loi, Busche, Tobias, Tedin, Karsten, Bernhardt, Jorg, Wollenhaupt, Jan, Huyen, Nguyen Thi Thu, Weise, Christoph, Kalinowski, Jörn, Wahl, Markus C., Fulde, Marcus, and Antelmann, Haike. “Redox-Sensing Under Hypochlorite Stress and Infection Conditions by the Rrf2-Family Repressor HypR in Staphylococcus aureus”. ANTIOXIDANTS & REDOX SIGNALING 29.7 (2018): 22.

3 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Staphylococcus aureus Uses the Bacilliredoxin (BrxAB)/Bacillithiol Disulfide Reductase (YpdA) Redox Pathway to Defend Against Oxidative Stress Under Infections.
Linzner N, Loi VV, Fritsch VN, Tung QN, Stenzel S, Wirtz M, Hell R, Hamilton CJ, Tedin K, Fulde M, Antelmann H., Front Microbiol 10(), 2019
PMID: 31275277
Comparative Secretome Analyses of Human and Zoonotic Staphylococcus aureus Isolates CC8, CC22, and CC398.
Busche T, Hillion M, Van Loi V, Berg D, Walther B, Semmler T, Strommenger B, Witte W, Cuny C, Mellmann A, Holmes MA, Kalinowski J, Adrian L, Bernhardt J, Antelmann H., Mol Cell Proteomics 17(12), 2018
PMID: 30201737
The AGXX® Antimicrobial Coating Causes a Thiol-Specific Oxidative Stress Response and Protein S-bacillithiolation in Staphylococcus aureus.
Loi VV, Busche T, Preuß T, Kalinowski J, Bernhardt J, Antelmann H., Front Microbiol 9(), 2018
PMID: 30619128

99 References

Daten bereitgestellt von Europe PubMed Central.

mosR, a novel transcriptional regulator of hypoxia and virulence in Mycobacterium tuberculosis.
Abomoelak B, Hoye EA, Chi J, Marcus SA, Laval F, Bannantine JP, Ward SK, Daffe M, Liu HD, Talaat AM., J. Bacteriol. 191(19), 2009
PMID: 19648248
Thiol-based redox switches and gene regulation.
Antelmann H, Helmann JD., Antioxid. Redox Signal. 14(6), 2010
PMID: 20626317
Staphylococcus aureus: a well-armed pathogen.
Archer GL., Clin. Infect. Dis. 26(5), 1998
PMID: 9597249
Flavoprotein disulfide reductases: advances in chemistry and function.
Argyrou A, Blanchard JS., Prog. Nucleic Acid Res. Mol. Biol. 78(), 2004
PMID: 15210329
New vector for efficient allelic replacement in naturally nontransformable, low-GC-content, gram-positive bacteria.
Arnaud M, Chastanet A, Debarbouille M., Appl. Environ. Microbiol. 70(11), 2004
PMID: 15528558
Transcriptomic and phenotypic analysis of paralogous spx gene function in Bacillus anthracis Sterne.
Barendt S, Lee H, Birch C, Nakano MM, Jones M, Zuber P., Microbiologyopen 2(4), 2013
PMID: 23873705
The SaeRS Two-Component System Is a Direct and Dominant Transcriptional Activator of Toxic Shock Syndrome Toxin 1 in Staphylococcus aureus.
Baroja ML, Herfst CA, Kasper KJ, Xu SX, Gillett DA, Li J, Reid G, McCormick JK., J. Bacteriol. 198(19), 2016
PMID: 27457715
Neutrophil-generated oxidative stress and protein damage in Staphylococcus aureus
Skaar EP., 2016
Transcriptional profiling of Bacillus anthracis during infection of host macrophages.
Bergman NH, Anderson EC, Swenson EE, Janes BK, Fisher N, Niemeyer MM, Miyoshi AD, Hanna PC., Infect. Immun. 75(7), 2007
PMID: 17470545
SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information.
Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Gallo Cassarino T, Bertoni M, Bordoli L, Schwede T., Nucleic Acids Res. 42(Web Server issue), 2014
PMID: 24782522
Exact and complete short-read alignment to microbial genomes using Graphics Processing Unit programming.
Blom J, Jakobi T, Doppmeier D, Jaenicke S, Kalinowski J, Stoye J, Goesmann A., Bioinformatics 27(10), 2011
PMID: 21450712
Epidemiology of methicillin-resistant Staphylococcus aureus.
Boucher HW, Corey GR., Clin. Infect. Dis. 46 Suppl 5(), 2008
PMID: 18462089
The Role of Bacillithiol in Gram-Positive Firmicutes.
Chandrangsu P, Loi VV, Antelmann H, Helmann JD., Antioxid. Redox Signal. 28(6), 2017
PMID: 28301954
An oxidation-sensing mechanism is used by the global regulator MgrA in Staphylococcus aureus.
Chen PR, Bae T, Williams WA, Duguid EM, Rice PA, Schneewind O, He C., Nat. Chem. Biol. 2(11), 2006
PMID: 16980961
Redox signaling in human pathogens.
Chen PR, Brugarolas P, He C., Antioxid. Redox Signal. 14(6), 2010
PMID: 20578795
A new oxidative sensing and regulation pathway mediated by the MgrA homologue SarZ in Staphylococcus aureus.
Chen PR, Nishida S, Poor CB, Cheng A, Bae T, Kuechenmeister L, Dunman PM, Missiakas D, He C., Mol. Microbiol. 71(1), 2008
PMID: 19007410
The SarA protein family of Staphylococcus aureus.
Cheung AL, Nishina KA, Trotonda MP, Tamber S., Int. J. Biochem. Cell Biol. 40(3), 2007
PMID: 18083623
The redox-sensing regulator YodB senses quinones and diamide via a thiol-disulfide switch in Bacillus subtilis.
Chi BK, Albrecht D, Gronau K, Becher D, Hecker M, Antelmann H., Proteomics 10(17), 2010
PMID: 20652907
Protein S-mycothiolation functions as redox-switch and thiol protection mechanism in Corynebacterium glutamicum under hypochlorite stress.
Chi BK, Busche T, Van Laer K, Basell K, Becher D, Clermont L, Seibold GM, Persicke M, Kalinowski J, Messens J, Antelmann H., Antioxid. Redox Signal. 20(4), 2013
PMID: 23886307
S-bacillithiolation protects against hypochlorite stress in Bacillus subtilis as revealed by transcriptomics and redox proteomics
Antelmann H., 2011
The paralogous MarR/DUF24-family repressors YodB and CatR control expression of the catechol dioxygenase CatE in Bacillus subtilis.
Chi BK, Kobayashi K, Albrecht D, Hecker M, Antelmann H., J. Bacteriol. 192(18), 2010
PMID: 20639328
S-bacillithiolation protects conserved and essential proteins against hypochlorite stress in firmicutes bacteria.
Chi BK, Roberts AA, Huyen TT, Basell K, Becher D, Albrecht D, Hamilton CJ, Antelmann H., Antioxid. Redox Signal. 18(11), 2012
PMID: 22938038
NsrR from Streptomyces coelicolor is a nitric oxide-sensing [4Fe-4S] cluster protein with a specialized regulatory function.
Crack JC, Munnoch J, Dodd EL, Knowles F, Al Bassam MM, Kamali S, Holland AA, Cramer SP, Hamilton CJ, Johnson MK, Thomson AJ, Hutchings MI, Le Brun NE., J. Biol. Chem. 290(20), 2015
PMID: 25771538
Pore-forming toxins: ancient, but never really out of fashion.
Dal Peraro M, van der Goot FG., Nat. Rev. Microbiol. 14(2), 2015
PMID: 26639780
Complete genome sequence of USA300, an epidemic clone of community-acquired meticillin-resistant Staphylococcus aureus.
Diep BA, Gill SR, Chang RF, Phan TH, Chen JH, Davidson MG, Lin F, Lin J, Carleton HA, Mongodin EF, Sensabaugh GF, Perdreau-Remington F., Lancet 367(9512), 2006
PMID: 16517273
Peroxiredoxins in bacterial antioxidant defense.
Dubbs JM, Mongkolsuk S., Subcell. Biochem. 44(), 2007
PMID: 18084893
Peroxide-sensing transcriptional regulators in bacteria.
Dubbs JM, Mongkolsuk S., J. Bacteriol. 194(20), 2012
PMID: 22797754
Global control of cysteine metabolism by CymR in Bacillus subtilis.
Even S, Burguiere P, Auger S, Soutourina O, Danchin A, Martin-Verstraete I., J. Bacteriol. 188(6), 2006
PMID: 16513748
The Staphylococcus aureus "superbug".
Foster TJ., J. Clin. Invest. 114(12), 2004
PMID: 15599392
OhrR is a repressor of ohrA, a key organic hydroperoxide resistance determinant in Bacillus subtilis.
Fuangthong M, Atichartpongkul S, Mongkolsuk S, Helmann JD., J. Bacteriol. 183(14), 2001
PMID: 11418552
Regulation of Bacillus subtilis bacillithiol biosynthesis operons by Spx.
Gaballa A, Antelmann H, Hamilton CJ, Helmann JD., Microbiology (Reading, Engl.) 159(Pt 10), 2013
PMID: 23894131
Does the Transcription Factor NemR Use a Regulatory Sulfenamide Bond to Sense Bleach?
Gray MJ, Li Y, Leichert LI, Xu Z, Jakob U., Antioxid. Redox Signal. 23(9), 2015
PMID: 25867078
Bacterial responses to reactive chlorine species.
Gray MJ, Wholey WY, Jakob U., Annu. Rev. Microbiol. 67(), 2013
PMID: 23768204
NemR is a bleach-sensing transcription factor.
Gray MJ, Wholey WY, Parker BW, Kim M, Jakob U., J. Biol. Chem. 288(19), 2013
PMID: 23536188
Staphylococcus aureus SaeR/S-regulated factors reduce human neutrophil reactive oxygen species production.
Guerra FE, Addison CB, de Jong NW, Azzolino J, Pallister KB, van Strijp JA, Voyich JM., J. Leukoc. Biol. 100(5), 2016
PMID: 27334228
Subtle genetic changes enhance virulence of methicillin resistant and sensitive Staphylococcus aureus.
Highlander SK, Hulten KG, Qin X, Jiang H, Yerrapragada S, Mason EO Jr, Shang Y, Williams TM, Fortunov RM, Liu Y, Igboeli O, Petrosino J, Tirumalai M, Uzman A, Fox GE, Cardenas AM, Muzny DM, Hemphill L, Ding Y, Dugan S, Blyth PR, Buhay CJ, Dinh HH, Hawes AC, Holder M, Kovar CL, Lee SL, Liu W, Nazareth LV, Wang Q, Zhou J, Kaplan SL, Weinstock GM., BMC Microbiol. 7(), 2007
PMID: 17986343
ReadXplorer--visualization and analysis of mapped sequences.
Hilker R, Stadermann KB, Doppmeier D, Kalinowski J, Stoye J, Straube J, Winnebald J, Goesmann A., Bioinformatics 30(16), 2014
PMID: 24790157
Thiol-based redox switches in prokaryotes.
Hillion M, Antelmann H., Biol. Chem. 396(5), 2015
PMID: 25720121
Monitoring global protein thiol-oxidation and protein S-mycothiolation in Mycobacterium smegmatis under hypochlorite stress.
Hillion M, Bernhardt J, Busche T, Rossius M, Maaß S, Becher D, Rawat M, Wirtz M, Hell R, Ruckert C, Kalinowski J, Antelmann H., Sci Rep 7(1), 2017
PMID: 28446771
Zinc center as redox switch--new function for an old motif.
Ilbert M, Graf PC, Jakob U., Antioxid. Redox Signal. 8(5-6), 2006
PMID: 16771674
Protein S-Bacillithiolation Functions in Thiol Protection and Redox Regulation of the Glyceraldehyde-3-Phosphate Dehydrogenase Gap in Staphylococcus aureus Under Hypochlorite Stress.
Imber M, Huyen NTT, Pietrzyk-Brzezinska AJ, Loi VV, Hillion M, Bernhardt J, Tharichen L, Kolsek K, Saleh M, Hamilton CJ, Adrian L, Grater F, Wahl MC, Antelmann H., Antioxid. Redox Signal. 28(6), 2017
PMID: 27967218
Staphylococcus aureus CymR is a new thiol-based oxidation-sensing regulator of stress resistance and oxidative response.
Ji Q, Zhang L, Sun F, Deng X, Liang H, Bae T, He C., J. Biol. Chem. 287(25), 2012
PMID: 22553203
Myeloperoxidase: a front-line defender against phagocytosed microorganisms.
Klebanoff SJ, Kettle AJ, Rosen H, Winterbourn CC, Nauseef WM., J. Leukoc. Biol. 93(2), 2012
PMID: 23066164
Diamide: an oxidant probe for thiols.
Kosower NS, Kosower EM., Meth. Enzymol. 251(), 1995
PMID: 7651192
A complex thiolate switch regulates the Bacillus subtilis organic peroxide sensor OhrR.
Lee JW, Soonsanga S, Helmann JD., Proc. Natl. Acad. Sci. U.S.A. 104(21), 2007
PMID: 17502599
Regulation of quinone detoxification by the thiol stress sensing DUF24/MarR-like repressor, YodB in Bacillus subtilis.
Leelakriangsak M, Huyen NT, Towe S, van Duy N, Becher D, Hecker M, Antelmann H, Zuber P., Mol. Microbiol. 67(5), 2008
PMID: 18208493
Global methods to monitor the thiol-disulfide state of proteins in vivo.
Leichert LI, Jakob U., Antioxid. Redox Signal. 8(5-6), 2006
PMID: 16771668
The role of reactive oxygen intermediates in the intracellular fate of Leptospira interrogans in the macrophages of different hosts.
Li S, Li P, Zhang L, Hu W, Wang M, Liu Y, Tang G, Wang D, Zhou B, Yan J., PLoS ONE 12(6), 2017
PMID: 28575082
Escherichia coli and Candida albicans induced macrophage extracellular trap-like structures with limited microbicidal activity.
Liu P, Wu X, Liao C, Liu X, Du J, Shi H, Wang X, Bai X, Peng P, Yu L, Wang F, Zhao Y, Liu M., PLoS ONE 9(2), 2014
PMID: 24587206
The SaeRS two-component system of Staphylococcus aureus
Bae T., 2016
Antibiotic resistance in staphylococci.
Livermore DM., Int. J. Antimicrob. Agents 16 Suppl 1(), 2000
PMID: 11137402
Real-Time Imaging of the Bacillithiol Redox Potential in the Human Pathogen Staphylococcus aureus Using a Genetically Encoded Bacilliredoxin-Fused Redox Biosensor.
Loi VV, Harms M, Muller M, Huyen NTT, Hamilton CJ, Hochgrafe F, Pane-Farre J, Antelmann H., Antioxid. Redox Signal. 26(15), 2016
PMID: 27462976
Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.
Love MI, Huber W, Anders S., Genome Biol. 15(12), 2014
PMID: 25516281
Staphylococcus aureus infections.
Lowy FD., N. Engl. J. Med. 339(8), 1998
PMID: 9709046
Staphylococcus aureus Transcriptome Architecture: From Laboratory to Infection-Mimicking Conditions.
Mader U, Nicolas P, Depke M, Pane-Farre J, Debarbouille M, van der Kooi-Pol MM, Guerin C, Derozier S, Hiron A, Jarmer H, Leduc A, Michalik S, Reilman E, Schaffer M, Schmidt F, Bessieres P, Noirot P, Hecker M, Msadek T, Volker U, van Dijl JM., PLoS Genet. 12(4), 2016
PMID: 27035918
Data visualization in environmental proteomics.
Mehlan H, Schmidt F, Weiss S, Schuler J, Fuchs S, Riedel K, Bernhardt J., Proteomics 13(18-19), 2013
PMID: 23913834
C-terminal cysteines of Tn501 mercuric ion reductase.
Moore MJ, Miller SM, Walsh CT., Biochemistry 31(6), 1992
PMID: 1531297
Deletion of membrane-associated Asp23 leads to upregulation of cell wall stress genes in Staphylococcus aureus.
Muller M, Reiß S, Schluter R, Mader U, Beyer A, Reiß W, Marles-Wright J, Lewis RJ, Pfortner H, Volker U, Riedel K, Hecker M, Engelmann S, Pane-Farre J., Mol. Microbiol. 93(6), 2014
PMID: 25074408
Characterization of a putative NsrR homologue in Streptomyces venezuelae reveals a new member of the Rrf2 superfamily.
Munnoch JT, Martinez MT, Svistunenko DA, Crack JC, Le Brun NE, Hutchings MI., Sci Rep 6(), 2016
PMID: 27605472
spxA2, encoding a regulator of stress resistance in Bacillus anthracis, is controlled by SaiR, a new member of the Rrf2 protein family.
Nakano MM, Kominos-Marvell W, Sane B, Nader YM, Barendt SM, Jones MB, Zuber P., Mol. Microbiol. 94(4), 2014
PMID: 25231235
Spx-dependent global transcriptional control is induced by thiol-specific oxidative stress in Bacillus subtilis.
Nakano S, Kuster-Schock E, Grossman AD, Zuber P., Proc. Natl. Acad. Sci. U.S.A. 100(23), 2003
PMID: 14597697
Condition-dependent transcriptome reveals high-level regulatory architecture in Bacillus subtilis.
Nicolas P, Mader U, Dervyn E, Rochat T, Leduc A, Pigeonneau N, Bidnenko E, Marchadier E, Hoebeke M, Aymerich S, Becher D, Bisicchia P, Botella E, Delumeau O, Doherty G, Denham EL, Fogg MJ, Fromion V, Goelzer A, Hansen A, Hartig E, Harwood CR, Homuth G, Jarmer H, Jules M, Klipp E, Le Chat L, Lecointe F, Lewis P, Liebermeister W, March A, Mars RA, Nannapaneni P, Noone D, Pohl S, Rinn B, Rugheimer F, Sappa PK, Samson F, Schaffer M, Schwikowski B, Steil L, Stulke J, Wiegert T, Devine KM, Wilkinson AJ, van Dijl JM, Hecker M, Volker U, Bessieres P, Noirot P., Science 335(6072), 2012
PMID: 22383849
Structural insights into the redox-switch mechanism of the MarR/DUF24-type regulator HypR.
Palm GJ, Khanh Chi B, Waack P, Gronau K, Becher D, Albrecht D, Hinrichs W, Read RJ, Antelmann H., Nucleic Acids Res. 40(9), 2012
PMID: 22238377
OhrR, a transcription repressor that senses and responds to changes in organic peroxide levels in Xanthomonas campestris pv. phaseoli.
Panmanee W, Vattanaviboon P, Eiamphungporn W, Whangsuk W, Sallabhan R, Mongkolsuk S., Mol. Microbiol. 45(6), 2002
PMID: 12354231
The RclR protein is a reactive chlorine-specific transcription factor in Escherichia coli.
Parker BW, Schwessinger EA, Jakob U, Gray MJ., J. Biol. Chem. 288(45), 2013
PMID: 24078635
Clinical relevance of the ESKAPE pathogens.
Pendleton JN, Gorman SP, Gilmore BF., Expert Rev Anti Infect Ther 11(3), 2013
PMID: 23458769
Activation of the alternative sigma factor SigB of Staphylococcus aureus following internalization by epithelial cells - an in vivo proteomics perspective.
Pfortner H, Burian MS, Michalik S, Depke M, Hildebrandt P, Dhople VM, Pane-Farre J, Hecker M, Schmidt F, Volker U., Int. J. Med. Microbiol. 304(2), 2013
PMID: 24480029
Distribution and infection-related functions of bacillithiol in Staphylococcus aureus.
Pother DC, Gierok P, Harms M, Mostertz J, Hochgrafe F, Antelmann H, Hamilton CJ, Borovok I, Lalk M, Aharonowitz Y, Hecker M., Int. J. Med. Microbiol. 303(3), 2013
PMID: 23517692
Lysozyme synthesis by established human and murine histiocytic lymphoma cell lines.
Ralph P, Moore MA, Nilsson K., J. Exp. Med. 143(6), 1976
PMID: 1083890
SEROLOGY, DENSITY, AND MORPHOLOGY OF STAPHYLOCOCCAL PHAGES.
ROSENBLUM ED, TYRONE S., J. Bacteriol. 88(), 1964
PMID: 14240964
What a difference a cluster makes: The multifaceted roles of IscR in gene regulation and DNA recognition.
Santos JA, Pereira PJ, Macedo-Ribeiro S., Biochim. Biophys. Acta 1854(9), 2015
PMID: 25641558
IscR, an Fe-S cluster-containing transcription factor, represses expression of Escherichia coli genes encoding Fe-S cluster assembly proteins.
Schwartz CJ, Giel JL, Patschkowski T, Luther C, Ruzicka FJ, Beinert H, Kiley PJ., Proc. Natl. Acad. Sci. U.S.A. 98(26), 2001
PMID: 11742080
Insights into the Rrf2 repressor family--the structure of CymR, the global cysteine regulator of Bacillus subtilis.
Shepard W, Soutourina O, Courtois E, England P, Haouz A, Martin-Verstraete I., FEBS J. 278(15), 2011
PMID: 21624051
Leukocidins: staphylococcal bi-component pore-forming toxins find their receptors.
Spaan AN, van Strijp JAG, Torres VJ., Nat. Rev. Microbiol. 15(7), 2017
PMID: 28420883
A novel MALDI LIFT-TOF/TOF mass spectrometer for proteomics.
Suckau D, Resemann A, Schuerenberg M, Hufnagel P, Franzen J, Holle A., Anal Bioanal Chem 376(7), 2003
PMID: 12830354
Protein cysteine phosphorylation of SarA/MgrA family transcriptional regulators mediates bacterial virulence and antibiotic resistance.
Sun F, Ding Y, Ji Q, Liang Z, Deng X, Wong CC, Yi C, Zhang L, Xie S, Alvarez S, Hicks LM, Luo C, Jiang H, Lan L, He C., Proc. Natl. Acad. Sci. U.S.A. 109(38), 2012
PMID: 22927394
Differential gene expression in response to phenol and catechol reveals different metabolic activities for the degradation of aromatic compounds in Bacillus subtilis.
Tam le T, Eymann C, Albrecht D, Sietmann R, Schauer F, Hecker M, Antelmann H., Environ. Microbiol. 8(8), 2006
PMID: 16872404
Crystal structures of the NO sensor NsrR reveal how its iron-sulfur cluster modulates DNA binding.
Volbeda A, Dodd EL, Darnault C, Crack JC, Renoux O, Hutchings MI, Le Brun NE, Fontecilla-Camps JC., Nat Commun 8(), 2017
PMID: 28425466
Insights into mechanisms used by Staphylococcus aureus to avoid destruction by human neutrophils.
Voyich JM, Braughton KR, Sturdevant DE, Whitney AR, Said-Salim B, Porcella SF, Long RD, Dorward DW, Gardner DJ, Kreiswirth BN, Musser JM, DeLeo FR., J. Immunol. 175(6), 2005
PMID: 16148137
The SaeR/S gene regulatory system is essential for innate immune evasion by Staphylococcus aureus.
Voyich JM, Vuong C, DeWald M, Nygaard TK, Kocianova S, Griffith S, Jones J, Iverson C, Sturdevant DE, Braughton KR, Whitney AR, Otto M, DeLeo FR., J. Infect. Dis. 199(11), 2009
PMID: 19374556
Cloning, sequencing, and molecular analysis of the dnaK locus from Bacillus subtilis.
Wetzstein M, Volker U, Dedio J, Lobau S, Zuber U, Schiesswohl M, Herget C, Hecker M, Schumann W., J. Bacteriol. 174(10), 1992
PMID: 1339421
Bleach activates a redox-regulated chaperone by oxidative protein unfolding.
Winter J, Ilbert M, Graf PC, Ozcelik D, Jakob U., Cell 135(4), 2008
PMID: 19013278
Redox reactions and microbial killing in the neutrophil phagosome.
Winterbourn CC, Kettle AJ., Antioxid. Redox Signal. 18(6), 2012
PMID: 22881869
Reactive Oxygen Species and Neutrophil Function.
Winterbourn CC, Kettle AJ, Hampton MB., Annu. Rev. Biochem. 85(), 2016
PMID: 27050287
Transcription Factor NsrR from Bacillus subtilis Senses Nitric Oxide with a 4Fe-4S Cluster (†).
Yukl ET, Elbaz MA, Nakano MM, Moenne-Loccoz P., Biochemistry 47(49), 2008
PMID: 19006327
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 29237286
PubMed | Europe PMC

Suchen in

Google Scholar