Sulfolobus acidocaldarius Transports Pentoses via a Carbohydrate Uptake Transporter 2 (CUT2)-Type ABC Transporter and Metabolizes Them through the Aldolase-Independent Weimberg Pathway

Wagner M, Shen L, Albersmeier A, van der Kolk N, Kim S, Cha J, Brasen C, Kalinowski J, Siebers B, Albers S-V (2018)
APPLIED AND ENVIRONMENTAL MICROBIOLOGY 84(3): 19.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Wagner, Michaela; Shen, Lu; Albersmeier, AndreasUniBi; van der Kolk, Nienke; Kim, Sujin; Cha, Jaeho; Brasen, Christopher; Kalinowski, JörnUniBi; Siebers, Bettina; Albers, Sonja-Verena
Abstract / Bemerkung
Sulfolobus spp. possess a great metabolic versatility and grow heterotrophically on various carbon sources, such as different sugars and peptides. Known sugar transporters in Archaea predominantly belong to ABC transport systems. Although several ABC transporters for sugar uptake have been characterized in the crenarchaeon Sulfolobus solfataricus, only one homologue of these transporters, the maltose/maltooligomer transporter, could be identified in the closely related Sulfolobus acidocaldarius. Comparison of the transcriptome of S. acidocaldarius MW001 grown on peptides alone and peptides in the presence of D-xylose allowed for the identification of the ABC transporter for D-xylose and L-arabinose transport and the gaining of deeper insights into pentose catabolism under the respective growth conditions. The D-xylose/L-arabinose substrate binding protein (SBP) (Saci_2122) of the ABC transporter is unique in Archaea and shares more similarity to bacterial SBPs of the carbohydrate uptake transporter-2 (CUT2) family than to any characterized archaeal one. The identified pentose transporter is the first CUT2 family ABC transporter analyzed in the domain of Archaea. Single-gene deletion mutants of the ABC transporter subunits exemplified the importance of the transport system for D-xylose and L-arabinose uptake. Next to the transporter operon, enzymes of the aldolase-independent pentose catabolism branch were found to be upregulated in N-Z-Amine and D-xylose medium. The alpha-ketoglutarate semialdehyde dehydrogenase (KGSADH; Saci_1938) seemed not to be essential for growth on pentoses. However, the deletion mutant of the 2-keto-3-deoxyarabinoate/xylonate dehydratase (KDXD [ also known as KDAD]; Saci_1939) was no longer able to catabolize D-xylose or L-arabinose, suggesting the absence of the aldolase-dependent branch in S. acidocaldarius. IMPORTANCE Thermoacidophilic microorganisms are emerging model organisms for biotechnological applications, as their optimal growth conditions resemble conditions used in certain biotechnologies such as industrial plant waste degradation. Because of its high genome stability, Sulfolobus acidocaldarius is especially suited as a platform organism for such applications. For use in (ligno)cellulose degradation, it was important to understand pentose uptake and metabolism in S. acidocaldarius. This study revealed that only the aldolase-independent Weimberg pathway is required for growth of S. acidocaldarius MW001 on D-xylose and L-arabinose. Moreover, S. acidocaldarius employs a CUT2 ABC transporter for pentose uptake, which is more similar to bacterial than to archaeal ABC transporters. The identification of pentose-inducible promoters will expedite the metabolic engineering of S. acidocaldarius for its development into a platform organism for (ligno)cellulose degradation.
Stichworte
ABC transporters; archaea; Sulfolobus carbon metabolism; pentose; metabolism; promoters; sugar transport
Erscheinungsjahr
2018
Zeitschriftentitel
APPLIED AND ENVIRONMENTAL MICROBIOLOGY
Band
84
Ausgabe
3
Art.-Nr.
19
ISSN
0099-2240
eISSN
1098-5336
Page URI
https://pub.uni-bielefeld.de/record/2917735

Zitieren

Wagner M, Shen L, Albersmeier A, et al. Sulfolobus acidocaldarius Transports Pentoses via a Carbohydrate Uptake Transporter 2 (CUT2)-Type ABC Transporter and Metabolizes Them through the Aldolase-Independent Weimberg Pathway. APPLIED AND ENVIRONMENTAL MICROBIOLOGY. 2018;84(3): 19.
Wagner, M., Shen, L., Albersmeier, A., van der Kolk, N., Kim, S., Cha, J., Brasen, C., et al. (2018). Sulfolobus acidocaldarius Transports Pentoses via a Carbohydrate Uptake Transporter 2 (CUT2)-Type ABC Transporter and Metabolizes Them through the Aldolase-Independent Weimberg Pathway. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 84(3), 19. doi:10.1128/AEM.01273-17
Wagner, M., Shen, L., Albersmeier, A., van der Kolk, N., Kim, S., Cha, J., Brasen, C., Kalinowski, J., Siebers, B., and Albers, S. - V. (2018). Sulfolobus acidocaldarius Transports Pentoses via a Carbohydrate Uptake Transporter 2 (CUT2)-Type ABC Transporter and Metabolizes Them through the Aldolase-Independent Weimberg Pathway. APPLIED AND ENVIRONMENTAL MICROBIOLOGY 84:19.
Wagner, M., et al., 2018. Sulfolobus acidocaldarius Transports Pentoses via a Carbohydrate Uptake Transporter 2 (CUT2)-Type ABC Transporter and Metabolizes Them through the Aldolase-Independent Weimberg Pathway. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 84(3): 19.
M. Wagner, et al., “Sulfolobus acidocaldarius Transports Pentoses via a Carbohydrate Uptake Transporter 2 (CUT2)-Type ABC Transporter and Metabolizes Them through the Aldolase-Independent Weimberg Pathway”, APPLIED AND ENVIRONMENTAL MICROBIOLOGY, vol. 84, 2018, : 19.
Wagner, M., Shen, L., Albersmeier, A., van der Kolk, N., Kim, S., Cha, J., Brasen, C., Kalinowski, J., Siebers, B., Albers, S.-V.: Sulfolobus acidocaldarius Transports Pentoses via a Carbohydrate Uptake Transporter 2 (CUT2)-Type ABC Transporter and Metabolizes Them through the Aldolase-Independent Weimberg Pathway. APPLIED AND ENVIRONMENTAL MICROBIOLOGY. 84, : 19 (2018).
Wagner, Michaela, Shen, Lu, Albersmeier, Andreas, van der Kolk, Nienke, Kim, Sujin, Cha, Jaeho, Brasen, Christopher, Kalinowski, Jörn, Siebers, Bettina, and Albers, Sonja-Verena. “Sulfolobus acidocaldarius Transports Pentoses via a Carbohydrate Uptake Transporter 2 (CUT2)-Type ABC Transporter and Metabolizes Them through the Aldolase-Independent Weimberg Pathway”. APPLIED AND ENVIRONMENTAL MICROBIOLOGY 84.3 (2018): 19.

2 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Novel non-phosphorylative pathway of pentose metabolism from bacteria.
Watanabe S, Fukumori F, Nishiwaki H, Sakurai Y, Tajima K, Watanabe Y., Sci Rep 9(1), 2019
PMID: 30655589
Functional Annotation of Bacterial Signal Transduction Systems: Progress and Challenges.
Martín-Mora D, Fernández M, Velando F, Ortega Á, Gavira JA, Matilla MA, Krell T., Int J Mol Sci 19(12), 2018
PMID: 30486299

49 References

Daten bereitgestellt von Europe PubMed Central.

Insights into ABC transport in archaea.
Albers SV, Koning SM, Konings WN, Driessen AJ., J. Bioenerg. Biomembr. 36(1), 2004
PMID: 15168605
Sugar transport in Sulfolobus solfataricus is mediated by two families of binding protein-dependent ABC transporters.
Elferink MG, Albers SV, Konings WN, Driessen AJ., Mol. Microbiol. 39(6), 2001
PMID: 11260467
Glucose transport in the extremely thermoacidophilic Sulfolobus solfataricus involves a high-affinity membrane-integrated binding protein.
Albers SV, Elferink MG, Charlebois RL, Sensen CW, Driessen AJ, Konings WN., J. Bacteriol. 181(14), 1999
PMID: 10400586
Regulation of expression of the arabinose and glucose transporter genes in the thermophilic archaeon Sulfolobus solfataricus.
Lubelska JM, Jonuscheit M, Schleper C, Albers SV, Driessen AJ., Extremophiles 10(5), 2006
PMID: 16604273
Production of recombinant and tagged proteins in the hyperthermophilic archaeon Sulfolobus solfataricus.
Albers SV, Jonuscheit M, Dinkelaker S, Urich T, Kletzin A, Tampe R, Driessen AJ, Schleper C., Appl. Environ. Microbiol. 72(1), 2006
PMID: 16391031
Identification of the missing links in prokaryotic pentose oxidation pathways: evidence for enzyme recruitment.
Brouns SJ, Walther J, Snijders AP, van de Werken HJ, Willemen HL, Worm P, de Vos MG, Andersson A, Lundgren M, Mazon HF, van den Heuvel RH, Nilsson P, Salmon L, de Vos WM, Wright PC, Bernander R, van der Oost J., J. Biol. Chem. 281(37), 2006
PMID: 16849334
Archaeal promoter architecture and mechanism of gene activation.
Peng N, Ao X, Liang YX, She Q., Biochem. Soc. Trans. 39(1), 2011
PMID: 21265754
An upstream activation element exerting differential transcriptional activation on an archaeal promoter.
Peng N, Xia Q, Chen Z, Liang YX, She Q., Mol. Microbiol. 74(4), 2009
PMID: 19818017
Investigation of the malE promoter and MalR, a positive regulator of the maltose regulon, for an improved expression system in Sulfolobus acidocaldarius.
Wagner M, Wagner A, Ma X, Kort JC, Ghosh A, Rauch B, Siebers B, Albers SV., Appl. Environ. Microbiol. 80(3), 2013
PMID: 24271181
Absence of diauxie during simultaneous utilization of glucose and Xylose by Sulfolobus acidocaldarius.
Joshua CJ, Dahl R, Benke PI, Keasling JD., J. Bacteriol. 193(6), 2011
PMID: 21239580
Metabolism of pentose sugars in the hyperthermophilic archaea Sulfolobus solfataricus and Sulfolobus acidocaldarius.
Nunn CE, Johnsen U, Schonheit P, Fuhrer T, Sauer U, Hough DW, Danson MJ., J. Biol. Chem. 285(44), 2010
PMID: 20736170
Novel metabolic pathways in Archaea.
Sato T, Atomi H., Curr. Opin. Microbiol. 14(3), 2011
PMID: 21612976
Carbohydrate metabolism in Archaea: current insights into unusual enzymes and pathways and their regulation.
Brasen C, Esser D, Rauch B, Siebers B., Microbiol. Mol. Biol. Rev. 78(1), 2014
PMID: 24600042
Versatile Genetic Tool Box for the Crenarchaeote Sulfolobus acidocaldarius.
Wagner M, van Wolferen M, Wagner A, Lassak K, Meyer BH, Reimann J, Albers SV., Front Microbiol 3(), 2012
PMID: 22707949
Transcriptional profiling of Caulobacter crescentus during growth on complex and minimal media.
Hottes AK, Meewan M, Yang D, Arana N, Romero P, McAdams HH, Stephens C., J. Bacteriol. 186(5), 2004
PMID: 14973021
Fast gapped-read alignment with Bowtie 2.
Langmead B, Salzberg SL., Nat. Methods 9(4), 2012
PMID: 22388286
ReadXplorer--visualization and analysis of mapped sequences.
Hilker R, Stadermann KB, Doppmeier D, Kalinowski J, Stoye J, Straube J, Winnebald J, Goesmann A., Bioinformatics 30(16), 2014
PMID: 24790157
Mapping and quantifying mammalian transcriptomes by RNA-Seq.
Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B., Nat. Methods 5(7), 2008
PMID: 18516045
Differential expression analysis for sequence count data.
Anders S, Huber W., Genome Biol. 11(10), 2010
PMID: 20979621
Molecular analysis of the crenarchaeal flagellum.
Lassak K, Neiner T, Ghosh A, Klingl A, Wirth R, Albers SV., Mol. Microbiol. 83(1), 2011
PMID: 22081969
Identification of two interaction sites in SecY that are important for the functional interaction with SecA.
van der Sluis EO, Nouwen N, Koch J, de Keyzer J, van der Does C, Tampe R, Driessen AJ., J. Mol. Biol. 361(5), 2006
PMID: 16890955
Archaeal signal transduction: impact of protein phosphatase deletions on cell size, motility, and energy metabolism in Sulfolobus acidocaldarius.
Reimann J, Esser D, Orell A, Amman F, Pham TK, Noirel J, Lindas AC, Bernander R, Wright PC, Siebers B, Albers SV., Mol. Cell Proteomics 12(12), 2013
PMID: 24078887

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
WebLogo: a sequence logo generator.
Crooks GE, Hon G, Chandonia JM, Brenner SE., Genome Res. 14(6), 2004
PMID: 15173120
A conserved hexanucleotide motif is important in UV-inducible promoters in Sulfolobus acidocaldarius
Le TN, Wagner A, Albers SV., 2017
An extremely thermostable aldolase from Sulfolobus solfataricus with specificity for non-phosphorylated substrates.
Buchanan CL, Connaris H, Danson MJ, Reeve CD, Hough DW., Biochem. J. 343 Pt 3(), 1999
PMID: 10527934
Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ., Nucleic Acids Res. 25(17), 1997
PMID: 9254694
Absynte: a web tool to analyze the evolution of orthologous archaeal and bacterial gene clusters.
Despalins A, Marsit S, Oberto J., Bioinformatics 27(20), 2011
PMID: 21840875
The Transporter Classification Database (TCDB): recent advances.
Saier MH Jr, Reddy VS, Tsu BV, Ahmed MS, Li C, Moreno-Hagelsieb G., Nucleic Acids Res. 44(D1), 2015
PMID: 26546518
Structure and function of the adhesive type IV pilus of Sulfolobus acidocaldarius.
Henche AL, Ghosh A, Yu X, Jeske T, Egelman E, Albers SV., Environ. Microbiol. 14(12), 2012
PMID: 23078543
Comparative growth studies of the extreme thermophile Sulfolobus acidocaldarius in submerged and solidified substrate cultures
Hatzinikolaou DG, Kalogeris E, Christakopoulos P, Kekos D, Macris BJ., 2001
Sugar transport in (hyper)thermophilic archaea.
Koning SM, Albers SV, Konings WN, Driessen AJ., Res. Microbiol. 153(2), 2002
PMID: 11902154
ABC transporters catalyzing carbohydrate uptake.
Schneider E., Res. Microbiol. 152(3-4), 2001
PMID: 11421277
Evolutionary relationships of ATP-Binding Cassette (ABC) uptake porters.
Zheng WH, Vastermark A, Shlykov MA, Reddy V, Sun EI, Saier MH Jr., BMC Microbiol. 13(), 2013
PMID: 23647830
The ROK family regulator Rok7B7 pleiotropically affects xylose utilization, carbon catabolite repression, and antibiotic production in streptomyces coelicolor.
Swiatek MA, Gubbens J, Bucca G, Song E, Yang YH, Laing E, Kim BG, Smith CP, van Wezel GP., J. Bacteriol. 195(6), 2013
PMID: 23292782
Fructose uptake in Sinorhizobium meliloti is mediated by a high-affinity ATP-binding cassette transport system.
Lambert A, Osteras M, Mandon K, Poggi MC, Le Rudulier D., J. Bacteriol. 183(16), 2001
PMID: 11466273

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Promiscuity in the part-phosphorylative Entner-Doudoroff pathway of the archaeon Sulfolobus solfataricus.
Lamble HJ, Theodossis A, Milburn CC, Taylor GL, Bull SD, Hough DW, Danson MJ., FEBS Lett. 579(30), 2005
PMID: 16330030
Gluconate dehydratase from the promiscuous Entner-Doudoroff pathway in Sulfolobus solfataricus.
Lamble HJ, Milburn CC, Taylor GL, Hough DW, Danson MJ., FEBS Lett. 576(1-2), 2004
PMID: 15474024
Unraveling the function of paralogs of the aldehyde dehydrogenase super family from Sulfolobus solfataricus.
Esser D, Kouril T, Talfournier F, Polkowska J, Schrader T, Brasen C, Siebers B., Extremophiles 17(2), 2013
PMID: 23296511
A single-base resolution map of an archaeal transcriptome.
Wurtzel O, Sapra R, Chen F, Zhu Y, Simmons BA, Sorek R., Genome Res. 20(1), 2009
PMID: 19884261

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 29150511
PubMed | Europe PMC

Suchen in

Google Scholar